Բազմապատիկ
\left(t-2\right)^{2}
Գնահատել
\left(t-2\right)^{2}
Կիսվեք
Պատճենահանված է clipboard
a+b=-4 ab=1\times 4=4
Դուրս բերեք արտահայտությունը խմբավորելով։ Նախ, արտահայտութունը պետք է գրվի այսպես՝ t^{2}+at+bt+4։ a-ը և b-ը գտնելու համար ստեղծեք լուծելու համակարգ։
-1,-4 -2,-2
Քանի որ ab-ն դրական է, a-ն և b-ն նույն նշանն ունեն։ Քանի որ a+b-ն բացասական է, a-ն և b-ն երկուսն էլ բացասական են։ Թվարկեք բոլոր այն ամբողջ թվով զույգերը, որոնց արդյունքը 4 է։
-1-4=-5 -2-2=-4
Հաշվարկեք յուրաքանչյուր զույգի գումարը։
a=-2 b=-2
Լուծումը այն զույգն է, որը տալիս է -4 գումար։
\left(t^{2}-2t\right)+\left(-2t+4\right)
Նորից գրեք t^{2}-4t+4-ը \left(t^{2}-2t\right)+\left(-2t+4\right)-ի տեսքով:
t\left(t-2\right)-2\left(t-2\right)
Դուրս բերել t-ը առաջին իսկ -2-ը՝ երկրորդ խմբում։
\left(t-2\right)\left(t-2\right)
Ֆակտորացրեք t-2 սովորական անդամը՝ օգտագործելով բաժանիչ հատկություն:
\left(t-2\right)^{2}
Վերագրեք այն որպես երկանդամ քառակուսի:
factor(t^{2}-4t+4)
Այս եռանդամն ունի եռանդամ քառակուսու ձև՝ բազմապատկված ընդհանուր բազմապատիկով: Եռանդամ քառակուսիների բազմապատիկը կարելի է գտնել՝ գտնելով առաջին կամ վերջին անդամների քառակուսի արմատները:
\sqrt{4}=2
Գտեք վերջին անդամի քառակուսի արմատը՝ 4:
\left(t-2\right)^{2}
Եռանդամ քառակուսին երկանդամի քառակուսին է, որը առաջին կամ վերջին անդամների քառակուսի արմատների գումարը կամ տարբերությունն է, որը սահմանված է եռանդամ քառակուսու մեջտեղի անդամի նշանով:
t^{2}-4t+4=0
Քառակուսի բազմանդամը կարող է բազմապատկիչների վերածվել՝ օգտագործելով հետևյալ փոխակերպումը՝ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), որտեղ x_{1}-ը և x_{2}-ը ax^{2}+bx+c=0 քառակուսային հավասարման լուծումներն են։
t=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4}}{2}
ax^{2}+bx+c=0 ձևի բոլոր հավասարությունները կարող են լուծվել քառակուսու բանաձևի միջոցով. \frac{-b±\sqrt{b^{2}-4ac}}{2a}: Քառակուսու բանաձևը երկու լուծում ունի, մեկը երբ ±-ը գումարում է, իսկ մյուսը, երբ հանում է:
t=\frac{-\left(-4\right)±\sqrt{16-4\times 4}}{2}
-4-ի քառակուսի:
t=\frac{-\left(-4\right)±\sqrt{16-16}}{2}
Բազմապատկեք -4 անգամ 4:
t=\frac{-\left(-4\right)±\sqrt{0}}{2}
Գումարեք 16 -16-ին:
t=\frac{-\left(-4\right)±0}{2}
Հանեք 0-ի քառակուսի արմատը:
t=\frac{4±0}{2}
-4 թվի հակադրությունը 4 է:
t^{2}-4t+4=\left(t-2\right)\left(t-2\right)
Ֆակտորացրեք բնօրինակ արտահայտությունը՝ օգտագործելով ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)։ Փոխարինեք 2-ը x_{1}-ի և 2-ը x_{2}-ի։
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}