Skip դեպի հիմնական բովանդակությունը
Լուծել x-ի համար
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

9541x^{2}\times 90\times 50\times 3=4128
Բազմապատկեք x և x-ով և ստացեք x^{2}:
858690x^{2}\times 50\times 3=4128
Բազմապատկեք 9541 և 90-ով և ստացեք 858690:
42934500x^{2}\times 3=4128
Բազմապատկեք 858690 և 50-ով և ստացեք 42934500:
128803500x^{2}=4128
Բազմապատկեք 42934500 և 3-ով և ստացեք 128803500:
x^{2}=\frac{4128}{128803500}
Բաժանեք երկու կողմերը 128803500-ի:
x^{2}=\frac{344}{10733625}
Նվազեցնել \frac{4128}{128803500} կոտորակը մինչև ամենափոքր արժեքների՝ արտահանելով և չեղարկելով 12-ը:
x=\frac{2\sqrt{4102630}}{715575} x=-\frac{2\sqrt{4102630}}{715575}
Բարձրացրեք քառակուսի արմատ հավասարման երկու կողմերը:
9541x^{2}\times 90\times 50\times 3=4128
Բազմապատկեք x և x-ով և ստացեք x^{2}:
858690x^{2}\times 50\times 3=4128
Բազմապատկեք 9541 և 90-ով և ստացեք 858690:
42934500x^{2}\times 3=4128
Բազմապատկեք 858690 և 50-ով և ստացեք 42934500:
128803500x^{2}=4128
Բազմապատկեք 42934500 և 3-ով և ստացեք 128803500:
128803500x^{2}-4128=0
Հանեք 4128 երկու կողմերից:
x=\frac{0±\sqrt{0^{2}-4\times 128803500\left(-4128\right)}}{2\times 128803500}
Այս հավասարումը ստանդարտ ձևով է՝ ax^{2}+bx+c=0: \frac{-b±\sqrt{b^{2}-4ac}}{2a} քառ. հավ. արմ. բանաձևում փոխարինեք 128803500-ը a-ով, 0-ը b-ով և -4128-ը c-ով:
x=\frac{0±\sqrt{-4\times 128803500\left(-4128\right)}}{2\times 128803500}
0-ի քառակուսի:
x=\frac{0±\sqrt{-515214000\left(-4128\right)}}{2\times 128803500}
Բազմապատկեք -4 անգամ 128803500:
x=\frac{0±\sqrt{2126803392000}}{2\times 128803500}
Բազմապատկեք -515214000 անգամ -4128:
x=\frac{0±720\sqrt{4102630}}{2\times 128803500}
Հանեք 2126803392000-ի քառակուսի արմատը:
x=\frac{0±720\sqrt{4102630}}{257607000}
Բազմապատկեք 2 անգամ 128803500:
x=\frac{2\sqrt{4102630}}{715575}
Այժմ լուծել x=\frac{0±720\sqrt{4102630}}{257607000} հավասարումը, երբ ±-ը պլյուս է:
x=-\frac{2\sqrt{4102630}}{715575}
Այժմ լուծել x=\frac{0±720\sqrt{4102630}}{257607000} հավասարումը, երբ ±-ը մինուս է:
x=\frac{2\sqrt{4102630}}{715575} x=-\frac{2\sqrt{4102630}}{715575}
Հավասարումն այժմ լուծված է: