Skip դեպի հիմնական բովանդակությունը
Բազմապատիկ
Tick mark Image
Գնահատել
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

9\left(x^{2}-x-6\right)
Բաժանեք 9 բազմապատիկի վրա:
a+b=-1 ab=1\left(-6\right)=-6
Դիտարկեք x^{2}-x-6: Դուրս բերեք արտահայտությունը խմբավորելով։ Նախ, արտահայտութունը պետք է գրվի այսպես՝ x^{2}+ax+bx-6։ a-ը և b-ը գտնելու համար ստեղծեք լուծելու համակարգ։
1,-6 2,-3
Քանի որ ab-ն բացասական է, a-ն և b-ն հակառակ նշաններն ունեն։ Քանի որ a+b-ն բացասական է, բացասական թիվը ավելի մեծ բացարձակ արժեք ունի, քան դրականը։ Թվարկեք բոլոր այն ամբողջ թվով զույգերը, որոնց արդյունքը -6 է։
1-6=-5 2-3=-1
Հաշվարկեք յուրաքանչյուր զույգի գումարը։
a=-3 b=2
Լուծումը այն զույգն է, որը տալիս է -1 գումար։
\left(x^{2}-3x\right)+\left(2x-6\right)
Նորից գրեք x^{2}-x-6-ը \left(x^{2}-3x\right)+\left(2x-6\right)-ի տեսքով:
x\left(x-3\right)+2\left(x-3\right)
Դուրս բերել x-ը առաջին իսկ 2-ը՝ երկրորդ խմբում։
\left(x-3\right)\left(x+2\right)
Ֆակտորացրեք x-3 սովորական անդամը՝ օգտագործելով բաժանիչ հատկություն:
9\left(x-3\right)\left(x+2\right)
Վերագրեք բազմապատիկը ստացած ամբողջական արտահայտությունը:
9x^{2}-9x-54=0
Քառակուսի բազմանդամը կարող է բազմապատկիչների վերածվել՝ օգտագործելով հետևյալ փոխակերպումը՝ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), որտեղ x_{1}-ը և x_{2}-ը ax^{2}+bx+c=0 քառակուսային հավասարման լուծումներն են։
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 9\left(-54\right)}}{2\times 9}
ax^{2}+bx+c=0 ձևի բոլոր հավասարությունները կարող են լուծվել քառակուսու բանաձևի միջոցով. \frac{-b±\sqrt{b^{2}-4ac}}{2a}: Քառակուսու բանաձևը երկու լուծում ունի, մեկը երբ ±-ը գումարում է, իսկ մյուսը, երբ հանում է:
x=\frac{-\left(-9\right)±\sqrt{81-4\times 9\left(-54\right)}}{2\times 9}
-9-ի քառակուսի:
x=\frac{-\left(-9\right)±\sqrt{81-36\left(-54\right)}}{2\times 9}
Բազմապատկեք -4 անգամ 9:
x=\frac{-\left(-9\right)±\sqrt{81+1944}}{2\times 9}
Բազմապատկեք -36 անգամ -54:
x=\frac{-\left(-9\right)±\sqrt{2025}}{2\times 9}
Գումարեք 81 1944-ին:
x=\frac{-\left(-9\right)±45}{2\times 9}
Հանեք 2025-ի քառակուսի արմատը:
x=\frac{9±45}{2\times 9}
-9 թվի հակադրությունը 9 է:
x=\frac{9±45}{18}
Բազմապատկեք 2 անգամ 9:
x=\frac{54}{18}
Այժմ լուծել x=\frac{9±45}{18} հավասարումը, երբ ±-ը պլյուս է: Գումարեք 9 45-ին:
x=3
Բաժանեք 54-ը 18-ի վրա:
x=-\frac{36}{18}
Այժմ լուծել x=\frac{9±45}{18} հավասարումը, երբ ±-ը մինուս է: Հանեք 45 9-ից:
x=-2
Բաժանեք -36-ը 18-ի վրա:
9x^{2}-9x-54=9\left(x-3\right)\left(x-\left(-2\right)\right)
Ֆակտորացրեք բնօրինակ արտահայտությունը՝ օգտագործելով ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)։ Փոխարինեք 3-ը x_{1}-ի և -2-ը x_{2}-ի։
9x^{2}-9x-54=9\left(x-3\right)\left(x+2\right)
Պարզեցրեք p-\left(-q\right) ձևի բոլոր արտահայտությունները p+q-ի: