Լուծել x-ի համար
x=-2
x=-\frac{1}{3}\approx -0.333333333
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
9x^{2}-1=6x^{2}-7x-3
Օգտագործեք բաժանիչ հատկությունը՝ 3x+1-ը 2x-3-ով բազմապատկելու և նման պայմանները համակցելու համար:
9x^{2}-1-6x^{2}=-7x-3
Հանեք 6x^{2} երկու կողմերից:
3x^{2}-1=-7x-3
Համակցեք 9x^{2} և -6x^{2} և ստացեք 3x^{2}:
3x^{2}-1+7x=-3
Հավելել 7x-ը երկու կողմերում:
3x^{2}-1+7x+3=0
Հավելել 3-ը երկու կողմերում:
3x^{2}+2+7x=0
Գումարեք -1 և 3 և ստացեք 2:
3x^{2}+7x+2=0
Վերադասավորեք բազնաբդանտ՝ բերելով այն ստանդարտ ձևի: Դասավորեք անդամները բարձրից ցածր:
a+b=7 ab=3\times 2=6
Հավասարումը լուծելու համար դուրս բերեք ձախ հատվածը՝ խմբավորման միջոցով։ Նախ, ձախ հատվածը պետք է գրվի այսպես՝ 3x^{2}+ax+bx+2։ a-ը և b-ը գտնելու համար ստեղծեք լուծելու համակարգ։
1,6 2,3
Քանի որ ab-ն դրական է, a-ն և b-ն նույն նշանն ունեն։ Քանի որ a+b-ն դրական է, a-ն և b-ն երկուսն էլ դրական են։ Թվարկեք բոլոր այն ամբողջ թվով զույգերը, որոնց արդյունքը 6 է։
1+6=7 2+3=5
Հաշվարկեք յուրաքանչյուր զույգի գումարը։
a=1 b=6
Լուծումը այն զույգն է, որը տալիս է 7 գումար։
\left(3x^{2}+x\right)+\left(6x+2\right)
Նորից գրեք 3x^{2}+7x+2-ը \left(3x^{2}+x\right)+\left(6x+2\right)-ի տեսքով:
x\left(3x+1\right)+2\left(3x+1\right)
Դուրս բերել x-ը առաջին իսկ 2-ը՝ երկրորդ խմբում։
\left(3x+1\right)\left(x+2\right)
Ֆակտորացրեք 3x+1 սովորական անդամը՝ օգտագործելով բաժանիչ հատկություն:
x=-\frac{1}{3} x=-2
Հավասարման լուծումները գտնելու համար լուծեք 3x+1=0-ն և x+2=0-ն։
9x^{2}-1=6x^{2}-7x-3
Օգտագործեք բաժանիչ հատկությունը՝ 3x+1-ը 2x-3-ով բազմապատկելու և նման պայմանները համակցելու համար:
9x^{2}-1-6x^{2}=-7x-3
Հանեք 6x^{2} երկու կողմերից:
3x^{2}-1=-7x-3
Համակցեք 9x^{2} և -6x^{2} և ստացեք 3x^{2}:
3x^{2}-1+7x=-3
Հավելել 7x-ը երկու կողմերում:
3x^{2}-1+7x+3=0
Հավելել 3-ը երկու կողմերում:
3x^{2}+2+7x=0
Գումարեք -1 և 3 և ստացեք 2:
3x^{2}+7x+2=0
ax^{2}+bx+c=0 ձևի բոլոր հավասարությունները կարող են լուծվել քառակուսու բանաձևի միջոցով. \frac{-b±\sqrt{b^{2}-4ac}}{2a}: Քառակուսու բանաձևը երկու լուծում ունի, մեկը երբ ±-ը գումարում է, իսկ մյուսը, երբ հանում է:
x=\frac{-7±\sqrt{7^{2}-4\times 3\times 2}}{2\times 3}
Այս հավասարումը ստանդարտ ձևով է՝ ax^{2}+bx+c=0: \frac{-b±\sqrt{b^{2}-4ac}}{2a} քառ. հավ. արմ. բանաձևում փոխարինեք 3-ը a-ով, 7-ը b-ով և 2-ը c-ով:
x=\frac{-7±\sqrt{49-4\times 3\times 2}}{2\times 3}
7-ի քառակուսի:
x=\frac{-7±\sqrt{49-12\times 2}}{2\times 3}
Բազմապատկեք -4 անգամ 3:
x=\frac{-7±\sqrt{49-24}}{2\times 3}
Բազմապատկեք -12 անգամ 2:
x=\frac{-7±\sqrt{25}}{2\times 3}
Գումարեք 49 -24-ին:
x=\frac{-7±5}{2\times 3}
Հանեք 25-ի քառակուսի արմատը:
x=\frac{-7±5}{6}
Բազմապատկեք 2 անգամ 3:
x=-\frac{2}{6}
Այժմ լուծել x=\frac{-7±5}{6} հավասարումը, երբ ±-ը պլյուս է: Գումարեք -7 5-ին:
x=-\frac{1}{3}
Նվազեցնել \frac{-2}{6} կոտորակը մինչև ամենափոքր արժեքների՝ արտահանելով և չեղարկելով 2-ը:
x=-\frac{12}{6}
Այժմ լուծել x=\frac{-7±5}{6} հավասարումը, երբ ±-ը մինուս է: Հանեք 5 -7-ից:
x=-2
Բաժանեք -12-ը 6-ի վրա:
x=-\frac{1}{3} x=-2
Հավասարումն այժմ լուծված է:
9x^{2}-1=6x^{2}-7x-3
Օգտագործեք բաժանիչ հատկությունը՝ 3x+1-ը 2x-3-ով բազմապատկելու և նման պայմանները համակցելու համար:
9x^{2}-1-6x^{2}=-7x-3
Հանեք 6x^{2} երկու կողմերից:
3x^{2}-1=-7x-3
Համակցեք 9x^{2} և -6x^{2} և ստացեք 3x^{2}:
3x^{2}-1+7x=-3
Հավելել 7x-ը երկու կողմերում:
3x^{2}+7x=-3+1
Հավելել 1-ը երկու կողմերում:
3x^{2}+7x=-2
Գումարեք -3 և 1 և ստացեք -2:
\frac{3x^{2}+7x}{3}=-\frac{2}{3}
Բաժանեք երկու կողմերը 3-ի:
x^{2}+\frac{7}{3}x=-\frac{2}{3}
Բաժանելով 3-ի՝ հետարկվում է 3-ով բազմապատկումը:
x^{2}+\frac{7}{3}x+\left(\frac{7}{6}\right)^{2}=-\frac{2}{3}+\left(\frac{7}{6}\right)^{2}
Բաժանեք \frac{7}{3}-ը՝ x անդամի գործակիցը 2-ի և ստացեք \frac{7}{6}-ը: Ապա գումարեք \frac{7}{6}-ի քառակուսին հավասարման երկու կողմերին: Այս քայլը հավասարման ձախ կողմը դարձնում է լրիվ քառակուսի:
x^{2}+\frac{7}{3}x+\frac{49}{36}=-\frac{2}{3}+\frac{49}{36}
Բարձրացրեք քառակուսի \frac{7}{6}-ը՝ բարձրացնելով քառակուսի կոտորակի և համարիչը, և հայտարարը:
x^{2}+\frac{7}{3}x+\frac{49}{36}=\frac{25}{36}
Գումարեք -\frac{2}{3} \frac{49}{36}-ին՝ գտնելով ընդհանուր հայտարարը և գումարելով համարիչները: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը մինչև ամենացածր անդամը:
\left(x+\frac{7}{6}\right)^{2}=\frac{25}{36}
Գործոն x^{2}+\frac{7}{3}x+\frac{49}{36}: Ընդհանուր առմամբ, երբ x^{2}+bx+c մաքուր քառակուսի թիվ է, այն միշտ կարելի է համարել \left(x+\frac{b}{2}\right)^{2} ամբողջ մաս։
\sqrt{\left(x+\frac{7}{6}\right)^{2}}=\sqrt{\frac{25}{36}}
Բարձրացրեք քառակուսի արմատ հավասարման երկու կողմերը:
x+\frac{7}{6}=\frac{5}{6} x+\frac{7}{6}=-\frac{5}{6}
Պարզեցնել:
x=-\frac{1}{3} x=-2
Հանեք \frac{7}{6} հավասարման երկու կողմից:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}