Լուծել x-ի համար
x=-\frac{1}{3}\approx -0.333333333
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
9x^{2}+6x+10-9=0
Հանեք 9 երկու կողմերից:
9x^{2}+6x+1=0
Հանեք 9 10-ից և ստացեք 1:
a+b=6 ab=9\times 1=9
Հավասարումը լուծելու համար դուրս բերեք ձախ հատվածը՝ խմբավորման միջոցով։ Նախ, ձախ հատվածը պետք է գրվի այսպես՝ 9x^{2}+ax+bx+1։ a-ը և b-ը գտնելու համար ստեղծեք լուծելու համակարգ։
1,9 3,3
Քանի որ ab-ն դրական է, a-ն և b-ն նույն նշանն ունեն։ Քանի որ a+b-ն դրական է, a-ն և b-ն երկուսն էլ դրական են։ Թվարկեք բոլոր այն ամբողջ թվով զույգերը, որոնց արդյունքը 9 է։
1+9=10 3+3=6
Հաշվարկեք յուրաքանչյուր զույգի գումարը։
a=3 b=3
Լուծումը այն զույգն է, որը տալիս է 6 գումար։
\left(9x^{2}+3x\right)+\left(3x+1\right)
Նորից գրեք 9x^{2}+6x+1-ը \left(9x^{2}+3x\right)+\left(3x+1\right)-ի տեսքով:
3x\left(3x+1\right)+3x+1
Ֆակտորացրեք 3x-ը 9x^{2}+3x-ում։
\left(3x+1\right)\left(3x+1\right)
Ֆակտորացրեք 3x+1 սովորական անդամը՝ օգտագործելով բաժանիչ հատկություն:
\left(3x+1\right)^{2}
Վերագրեք այն որպես երկանդամ քառակուսի:
x=-\frac{1}{3}
Հավասարման լուծումը գտնելու համար լուծեք 3x+1=0։
9x^{2}+6x+10=9
ax^{2}+bx+c=0 ձևի բոլոր հավասարությունները կարող են լուծվել քառակուսու բանաձևի միջոցով. \frac{-b±\sqrt{b^{2}-4ac}}{2a}: Քառակուսու բանաձևը երկու լուծում ունի, մեկը երբ ±-ը գումարում է, իսկ մյուսը, երբ հանում է:
9x^{2}+6x+10-9=9-9
Հանեք 9 հավասարման երկու կողմից:
9x^{2}+6x+10-9=0
Հանելով 9 իրենից՝ մնում է 0:
9x^{2}+6x+1=0
Հանեք 9 10-ից:
x=\frac{-6±\sqrt{6^{2}-4\times 9}}{2\times 9}
Այս հավասարումը ստանդարտ ձևով է՝ ax^{2}+bx+c=0: \frac{-b±\sqrt{b^{2}-4ac}}{2a} քառ. հավ. արմ. բանաձևում փոխարինեք 9-ը a-ով, 6-ը b-ով և 1-ը c-ով:
x=\frac{-6±\sqrt{36-4\times 9}}{2\times 9}
6-ի քառակուսի:
x=\frac{-6±\sqrt{36-36}}{2\times 9}
Բազմապատկեք -4 անգամ 9:
x=\frac{-6±\sqrt{0}}{2\times 9}
Գումարեք 36 -36-ին:
x=-\frac{6}{2\times 9}
Հանեք 0-ի քառակուսի արմատը:
x=-\frac{6}{18}
Բազմապատկեք 2 անգամ 9:
x=-\frac{1}{3}
Նվազեցնել \frac{-6}{18} կոտորակը մինչև ամենափոքր արժեքների՝ արտահանելով և չեղարկելով 6-ը:
9x^{2}+6x+10=9
Սրա նման քառակուսի հավասարումները կարելի է լուծել՝ բարձրացնելով քառակուսի: Քառակուսի բարձրացնելու համար նախ հավասարումը պետք է լինի x^{2}+bx=c ձևով:
9x^{2}+6x+10-10=9-10
Հանեք 10 հավասարման երկու կողմից:
9x^{2}+6x=9-10
Հանելով 10 իրենից՝ մնում է 0:
9x^{2}+6x=-1
Հանեք 10 9-ից:
\frac{9x^{2}+6x}{9}=-\frac{1}{9}
Բաժանեք երկու կողմերը 9-ի:
x^{2}+\frac{6}{9}x=-\frac{1}{9}
Բաժանելով 9-ի՝ հետարկվում է 9-ով բազմապատկումը:
x^{2}+\frac{2}{3}x=-\frac{1}{9}
Նվազեցնել \frac{6}{9} կոտորակը մինչև ամենափոքր արժեքների՝ արտահանելով և չեղարկելով 3-ը:
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=-\frac{1}{9}+\left(\frac{1}{3}\right)^{2}
Բաժանեք \frac{2}{3}-ը՝ x անդամի գործակիցը 2-ի և ստացեք \frac{1}{3}-ը: Ապա գումարեք \frac{1}{3}-ի քառակուսին հավասարման երկու կողմերին: Այս քայլը հավասարման ձախ կողմը դարձնում է լրիվ քառակուսի:
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{-1+1}{9}
Բարձրացրեք քառակուսի \frac{1}{3}-ը՝ բարձրացնելով քառակուսի կոտորակի և համարիչը, և հայտարարը:
x^{2}+\frac{2}{3}x+\frac{1}{9}=0
Գումարեք -\frac{1}{9} \frac{1}{9}-ին՝ գտնելով ընդհանուր հայտարարը և գումարելով համարիչները: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը մինչև ամենացածր անդամը:
\left(x+\frac{1}{3}\right)^{2}=0
Գործոն x^{2}+\frac{2}{3}x+\frac{1}{9}: Ընդհանուր առմամբ, երբ x^{2}+bx+c մաքուր քառակուսի թիվ է, այն միշտ կարելի է համարել \left(x+\frac{b}{2}\right)^{2} ամբողջ մաս։
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{0}
Բարձրացրեք քառակուսի արմատ հավասարման երկու կողմերը:
x+\frac{1}{3}=0 x+\frac{1}{3}=0
Պարզեցնել:
x=-\frac{1}{3} x=-\frac{1}{3}
Հանեք \frac{1}{3} հավասարման երկու կողմից:
x=-\frac{1}{3}
Հավասարումն այժմ լուծված է: Լուծումները նույնն են:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}