Skip դեպի հիմնական բովանդակությունը
Լուծել x-ի համար
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

x\left(6x+30\right)=0
Բաժանեք x բազմապատիկի վրա:
x=0 x=-5
Հավասարման լուծումները գտնելու համար լուծեք x=0-ն և 6x+30=0-ն։
6x^{2}+30x=0
ax^{2}+bx+c=0 ձևի բոլոր հավասարությունները կարող են լուծվել քառակուսու բանաձևի միջոցով. \frac{-b±\sqrt{b^{2}-4ac}}{2a}: Քառակուսու բանաձևը երկու լուծում ունի, մեկը երբ ±-ը գումարում է, իսկ մյուսը, երբ հանում է:
x=\frac{-30±\sqrt{30^{2}}}{2\times 6}
Այս հավասարումը ստանդարտ ձևով է՝ ax^{2}+bx+c=0: \frac{-b±\sqrt{b^{2}-4ac}}{2a} քառ. հավ. արմ. բանաձևում փոխարինեք 6-ը a-ով, 30-ը b-ով և 0-ը c-ով:
x=\frac{-30±30}{2\times 6}
Հանեք 30^{2}-ի քառակուսի արմատը:
x=\frac{-30±30}{12}
Բազմապատկեք 2 անգամ 6:
x=\frac{0}{12}
Այժմ լուծել x=\frac{-30±30}{12} հավասարումը, երբ ±-ը պլյուս է: Գումարեք -30 30-ին:
x=0
Բաժանեք 0-ը 12-ի վրա:
x=-\frac{60}{12}
Այժմ լուծել x=\frac{-30±30}{12} հավասարումը, երբ ±-ը մինուս է: Հանեք 30 -30-ից:
x=-5
Բաժանեք -60-ը 12-ի վրա:
x=0 x=-5
Հավասարումն այժմ լուծված է:
6x^{2}+30x=0
Սրա նման քառակուսի հավասարումները կարելի է լուծել՝ բարձրացնելով քառակուսի: Քառակուսի բարձրացնելու համար նախ հավասարումը պետք է լինի x^{2}+bx=c ձևով:
\frac{6x^{2}+30x}{6}=\frac{0}{6}
Բաժանեք երկու կողմերը 6-ի:
x^{2}+\frac{30}{6}x=\frac{0}{6}
Բաժանելով 6-ի՝ հետարկվում է 6-ով բազմապատկումը:
x^{2}+5x=\frac{0}{6}
Բաժանեք 30-ը 6-ի վրա:
x^{2}+5x=0
Բաժանեք 0-ը 6-ի վրա:
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=\left(\frac{5}{2}\right)^{2}
Բաժանեք 5-ը՝ x անդամի գործակիցը 2-ի և ստացեք \frac{5}{2}-ը: Ապա գումարեք \frac{5}{2}-ի քառակուսին հավասարման երկու կողմերին: Այս քայլը հավասարման ձախ կողմը դարձնում է լրիվ քառակուսի:
x^{2}+5x+\frac{25}{4}=\frac{25}{4}
Բարձրացրեք քառակուսի \frac{5}{2}-ը՝ բարձրացնելով քառակուսի կոտորակի և համարիչը, և հայտարարը:
\left(x+\frac{5}{2}\right)^{2}=\frac{25}{4}
Գործոն x^{2}+5x+\frac{25}{4}: Ընդհանուր առմամբ, երբ x^{2}+bx+c մաքուր քառակուսի թիվ է, այն միշտ կարելի է համարել \left(x+\frac{b}{2}\right)^{2} ամբողջ մաս։
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Բարձրացրեք քառակուսի արմատ հավասարման երկու կողմերը:
x+\frac{5}{2}=\frac{5}{2} x+\frac{5}{2}=-\frac{5}{2}
Պարզեցնել:
x=0 x=-5
Հանեք \frac{5}{2} հավասարման երկու կողմից: