Լուծել a-ի համար
a = \frac{\sqrt{42}}{6} \approx 1.08012345
a = -\frac{\sqrt{42}}{6} \approx -1.08012345
Կիսվեք
Պատճենահանված է clipboard
6a^{2}=4+3
Հավելել 3-ը երկու կողմերում:
6a^{2}=7
Գումարեք 4 և 3 և ստացեք 7:
a^{2}=\frac{7}{6}
Բաժանեք երկու կողմերը 6-ի:
a=\frac{\sqrt{42}}{6} a=-\frac{\sqrt{42}}{6}
Բարձրացրեք քառակուսի արմատ հավասարման երկու կողմերը:
6a^{2}-3-4=0
Հանեք 4 երկու կողմերից:
6a^{2}-7=0
Հանեք 4 -3-ից և ստացեք -7:
a=\frac{0±\sqrt{0^{2}-4\times 6\left(-7\right)}}{2\times 6}
Այս հավասարումը ստանդարտ ձևով է՝ ax^{2}+bx+c=0: \frac{-b±\sqrt{b^{2}-4ac}}{2a} քառ. հավ. արմ. բանաձևում փոխարինեք 6-ը a-ով, 0-ը b-ով և -7-ը c-ով:
a=\frac{0±\sqrt{-4\times 6\left(-7\right)}}{2\times 6}
0-ի քառակուսի:
a=\frac{0±\sqrt{-24\left(-7\right)}}{2\times 6}
Բազմապատկեք -4 անգամ 6:
a=\frac{0±\sqrt{168}}{2\times 6}
Բազմապատկեք -24 անգամ -7:
a=\frac{0±2\sqrt{42}}{2\times 6}
Հանեք 168-ի քառակուսի արմատը:
a=\frac{0±2\sqrt{42}}{12}
Բազմապատկեք 2 անգամ 6:
a=\frac{\sqrt{42}}{6}
Այժմ լուծել a=\frac{0±2\sqrt{42}}{12} հավասարումը, երբ ±-ը պլյուս է:
a=-\frac{\sqrt{42}}{6}
Այժմ լուծել a=\frac{0±2\sqrt{42}}{12} հավասարումը, երբ ±-ը մինուս է:
a=\frac{\sqrt{42}}{6} a=-\frac{\sqrt{42}}{6}
Հավասարումն այժմ լուծված է:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}