Skip դեպի հիմնական բովանդակությունը
Լուծել x-ի համար
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

5x-2\left(x-1\right)\left(3-x\right)-11=0
Հանեք 11 երկու կողմերից:
5x+\left(-2x+2\right)\left(3-x\right)-11=0
Օգտագործեք բաժանիչ հատկությունը՝ -2 x-1-ով բազմապատկելու համար:
5x-8x+2x^{2}+6-11=0
Օգտագործեք բաժանիչ հատկությունը՝ -2x+2-ը 3-x-ով բազմապատկելու և նման պայմանները համակցելու համար:
-3x+2x^{2}+6-11=0
Համակցեք 5x և -8x և ստացեք -3x:
-3x+2x^{2}-5=0
Հանեք 11 6-ից և ստացեք -5:
2x^{2}-3x-5=0
ax^{2}+bx+c=0 ձևի բոլոր հավասարությունները կարող են լուծվել քառակուսու բանաձևի միջոցով. \frac{-b±\sqrt{b^{2}-4ac}}{2a}: Քառակուսու բանաձևը երկու լուծում ունի, մեկը երբ ±-ը գումարում է, իսկ մյուսը, երբ հանում է:
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\left(-5\right)}}{2\times 2}
Այս հավասարումը ստանդարտ ձևով է՝ ax^{2}+bx+c=0: \frac{-b±\sqrt{b^{2}-4ac}}{2a} քառ. հավ. արմ. բանաձևում փոխարինեք 2-ը a-ով, -3-ը b-ով և -5-ը c-ով:
x=\frac{-\left(-3\right)±\sqrt{9-4\times 2\left(-5\right)}}{2\times 2}
-3-ի քառակուսի:
x=\frac{-\left(-3\right)±\sqrt{9-8\left(-5\right)}}{2\times 2}
Բազմապատկեք -4 անգամ 2:
x=\frac{-\left(-3\right)±\sqrt{9+40}}{2\times 2}
Բազմապատկեք -8 անգամ -5:
x=\frac{-\left(-3\right)±\sqrt{49}}{2\times 2}
Գումարեք 9 40-ին:
x=\frac{-\left(-3\right)±7}{2\times 2}
Հանեք 49-ի քառակուսի արմատը:
x=\frac{3±7}{2\times 2}
-3 թվի հակադրությունը 3 է:
x=\frac{3±7}{4}
Բազմապատկեք 2 անգամ 2:
x=\frac{10}{4}
Այժմ լուծել x=\frac{3±7}{4} հավասարումը, երբ ±-ը պլյուս է: Գումարեք 3 7-ին:
x=\frac{5}{2}
Նվազեցնել \frac{10}{4} կոտորակը մինչև ամենափոքր արժեքների՝ արտահանելով և չեղարկելով 2-ը:
x=-\frac{4}{4}
Այժմ լուծել x=\frac{3±7}{4} հավասարումը, երբ ±-ը մինուս է: Հանեք 7 3-ից:
x=-1
Բաժանեք -4-ը 4-ի վրա:
x=\frac{5}{2} x=-1
Հավասարումն այժմ լուծված է:
5x-2\left(x-1\right)\left(3-x\right)=11
Բազմապատկեք -1 և 2-ով և ստացեք -2:
5x+\left(-2x+2\right)\left(3-x\right)=11
Օգտագործեք բաժանիչ հատկությունը՝ -2 x-1-ով բազմապատկելու համար:
5x-8x+2x^{2}+6=11
Օգտագործեք բաժանիչ հատկությունը՝ -2x+2-ը 3-x-ով բազմապատկելու և նման պայմանները համակցելու համար:
-3x+2x^{2}+6=11
Համակցեք 5x և -8x և ստացեք -3x:
-3x+2x^{2}=11-6
Հանեք 6 երկու կողմերից:
-3x+2x^{2}=5
Հանեք 6 11-ից և ստացեք 5:
2x^{2}-3x=5
Սրա նման քառակուսի հավասարումները կարելի է լուծել՝ բարձրացնելով քառակուսի: Քառակուսի բարձրացնելու համար նախ հավասարումը պետք է լինի x^{2}+bx=c ձևով:
\frac{2x^{2}-3x}{2}=\frac{5}{2}
Բաժանեք երկու կողմերը 2-ի:
x^{2}-\frac{3}{2}x=\frac{5}{2}
Բաժանելով 2-ի՝ հետարկվում է 2-ով բազմապատկումը:
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=\frac{5}{2}+\left(-\frac{3}{4}\right)^{2}
Բաժանեք -\frac{3}{2}-ը՝ x անդամի գործակիցը 2-ի և ստացեք -\frac{3}{4}-ը: Ապա գումարեք -\frac{3}{4}-ի քառակուսին հավասարման երկու կողմերին: Այս քայլը հավասարման ձախ կողմը դարձնում է լրիվ քառակուսի:
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{5}{2}+\frac{9}{16}
Բարձրացրեք քառակուսի -\frac{3}{4}-ը՝ բարձրացնելով քառակուսի կոտորակի և համարիչը, և հայտարարը:
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{49}{16}
Գումարեք \frac{5}{2} \frac{9}{16}-ին՝ գտնելով ընդհանուր հայտարարը և գումարելով համարիչները: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը մինչև ամենացածր անդամը:
\left(x-\frac{3}{4}\right)^{2}=\frac{49}{16}
Գործոն x^{2}-\frac{3}{2}x+\frac{9}{16}: Ընդհանուր առմամբ, երբ x^{2}+bx+c մաքուր քառակուսի թիվ է, այն միշտ կարելի է համարել \left(x+\frac{b}{2}\right)^{2} ամբողջ մաս։
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Բարձրացրեք քառակուսի արմատ հավասարման երկու կողմերը:
x-\frac{3}{4}=\frac{7}{4} x-\frac{3}{4}=-\frac{7}{4}
Պարզեցնել:
x=\frac{5}{2} x=-1
Գումարեք \frac{3}{4} հավասարման երկու կողմին: