Skip դեպի հիմնական բովանդակությունը
Լուծել x-ի համար
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

x\left(5x+4\right)=0
Բաժանեք x բազմապատիկի վրա:
x=0 x=-\frac{4}{5}
Հավասարման լուծումները գտնելու համար լուծեք x=0-ն և 5x+4=0-ն։
5x^{2}+4x=0
ax^{2}+bx+c=0 ձևի բոլոր հավասարությունները կարող են լուծվել քառակուսու բանաձևի միջոցով. \frac{-b±\sqrt{b^{2}-4ac}}{2a}: Քառակուսու բանաձևը երկու լուծում ունի, մեկը երբ ±-ը գումարում է, իսկ մյուսը, երբ հանում է:
x=\frac{-4±\sqrt{4^{2}}}{2\times 5}
Այս հավասարումը ստանդարտ ձևով է՝ ax^{2}+bx+c=0: \frac{-b±\sqrt{b^{2}-4ac}}{2a} քառ. հավ. արմ. բանաձևում փոխարինեք 5-ը a-ով, 4-ը b-ով և 0-ը c-ով:
x=\frac{-4±4}{2\times 5}
Հանեք 4^{2}-ի քառակուսի արմատը:
x=\frac{-4±4}{10}
Բազմապատկեք 2 անգամ 5:
x=\frac{0}{10}
Այժմ լուծել x=\frac{-4±4}{10} հավասարումը, երբ ±-ը պլյուս է: Գումարեք -4 4-ին:
x=0
Բաժանեք 0-ը 10-ի վրա:
x=-\frac{8}{10}
Այժմ լուծել x=\frac{-4±4}{10} հավասարումը, երբ ±-ը մինուս է: Հանեք 4 -4-ից:
x=-\frac{4}{5}
Նվազեցնել \frac{-8}{10} կոտորակը մինչև ամենափոքր արժեքների՝ արտահանելով և չեղարկելով 2-ը:
x=0 x=-\frac{4}{5}
Հավասարումն այժմ լուծված է:
5x^{2}+4x=0
Սրա նման քառակուսի հավասարումները կարելի է լուծել՝ բարձրացնելով քառակուսի: Քառակուսի բարձրացնելու համար նախ հավասարումը պետք է լինի x^{2}+bx=c ձևով:
\frac{5x^{2}+4x}{5}=\frac{0}{5}
Բաժանեք երկու կողմերը 5-ի:
x^{2}+\frac{4}{5}x=\frac{0}{5}
Բաժանելով 5-ի՝ հետարկվում է 5-ով բազմապատկումը:
x^{2}+\frac{4}{5}x=0
Բաժանեք 0-ը 5-ի վրա:
x^{2}+\frac{4}{5}x+\left(\frac{2}{5}\right)^{2}=\left(\frac{2}{5}\right)^{2}
Բաժանեք \frac{4}{5}-ը՝ x անդամի գործակիցը 2-ի և ստացեք \frac{2}{5}-ը: Ապա գումարեք \frac{2}{5}-ի քառակուսին հավասարման երկու կողմերին: Այս քայլը հավասարման ձախ կողմը դարձնում է լրիվ քառակուսի:
x^{2}+\frac{4}{5}x+\frac{4}{25}=\frac{4}{25}
Բարձրացրեք քառակուսի \frac{2}{5}-ը՝ բարձրացնելով քառակուսի կոտորակի և համարիչը, և հայտարարը:
\left(x+\frac{2}{5}\right)^{2}=\frac{4}{25}
Գործոն x^{2}+\frac{4}{5}x+\frac{4}{25}: Ընդհանուր առմամբ, երբ x^{2}+bx+c մաքուր քառակուսի թիվ է, այն միշտ կարելի է համարել \left(x+\frac{b}{2}\right)^{2} ամբողջ մաս։
\sqrt{\left(x+\frac{2}{5}\right)^{2}}=\sqrt{\frac{4}{25}}
Բարձրացրեք քառակուսի արմատ հավասարման երկու կողմերը:
x+\frac{2}{5}=\frac{2}{5} x+\frac{2}{5}=-\frac{2}{5}
Պարզեցնել:
x=0 x=-\frac{4}{5}
Հանեք \frac{2}{5} հավասարման երկու կողմից: