Լուծել x-ի համար (complex solution)
x=\frac{-2+\sqrt{11}i}{5}\approx -0.4+0.663324958i
x=\frac{-\sqrt{11}i-2}{5}\approx -0.4-0.663324958i
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
5x^{2}+4x+3=0
ax^{2}+bx+c=0 ձևի բոլոր հավասարությունները կարող են լուծվել քառակուսու բանաձևի միջոցով. \frac{-b±\sqrt{b^{2}-4ac}}{2a}: Քառակուսու բանաձևը երկու լուծում ունի, մեկը երբ ±-ը գումարում է, իսկ մյուսը, երբ հանում է:
x=\frac{-4±\sqrt{4^{2}-4\times 5\times 3}}{2\times 5}
Այս հավասարումը ստանդարտ ձևով է՝ ax^{2}+bx+c=0: \frac{-b±\sqrt{b^{2}-4ac}}{2a} քառ. հավ. արմ. բանաձևում փոխարինեք 5-ը a-ով, 4-ը b-ով և 3-ը c-ով:
x=\frac{-4±\sqrt{16-4\times 5\times 3}}{2\times 5}
4-ի քառակուսի:
x=\frac{-4±\sqrt{16-20\times 3}}{2\times 5}
Բազմապատկեք -4 անգամ 5:
x=\frac{-4±\sqrt{16-60}}{2\times 5}
Բազմապատկեք -20 անգամ 3:
x=\frac{-4±\sqrt{-44}}{2\times 5}
Գումարեք 16 -60-ին:
x=\frac{-4±2\sqrt{11}i}{2\times 5}
Հանեք -44-ի քառակուսի արմատը:
x=\frac{-4±2\sqrt{11}i}{10}
Բազմապատկեք 2 անգամ 5:
x=\frac{-4+2\sqrt{11}i}{10}
Այժմ լուծել x=\frac{-4±2\sqrt{11}i}{10} հավասարումը, երբ ±-ը պլյուս է: Գումարեք -4 2i\sqrt{11}-ին:
x=\frac{-2+\sqrt{11}i}{5}
Բաժանեք -4+2i\sqrt{11}-ը 10-ի վրա:
x=\frac{-2\sqrt{11}i-4}{10}
Այժմ լուծել x=\frac{-4±2\sqrt{11}i}{10} հավասարումը, երբ ±-ը մինուս է: Հանեք 2i\sqrt{11} -4-ից:
x=\frac{-\sqrt{11}i-2}{5}
Բաժանեք -4-2i\sqrt{11}-ը 10-ի վրա:
x=\frac{-2+\sqrt{11}i}{5} x=\frac{-\sqrt{11}i-2}{5}
Հավասարումն այժմ լուծված է:
5x^{2}+4x+3=0
Սրա նման քառակուսի հավասարումները կարելի է լուծել՝ բարձրացնելով քառակուսի: Քառակուսի բարձրացնելու համար նախ հավասարումը պետք է լինի x^{2}+bx=c ձևով:
5x^{2}+4x+3-3=-3
Հանեք 3 հավասարման երկու կողմից:
5x^{2}+4x=-3
Հանելով 3 իրենից՝ մնում է 0:
\frac{5x^{2}+4x}{5}=-\frac{3}{5}
Բաժանեք երկու կողմերը 5-ի:
x^{2}+\frac{4}{5}x=-\frac{3}{5}
Բաժանելով 5-ի՝ հետարկվում է 5-ով բազմապատկումը:
x^{2}+\frac{4}{5}x+\left(\frac{2}{5}\right)^{2}=-\frac{3}{5}+\left(\frac{2}{5}\right)^{2}
Բաժանեք \frac{4}{5}-ը՝ x անդամի գործակիցը 2-ի և ստացեք \frac{2}{5}-ը: Ապա գումարեք \frac{2}{5}-ի քառակուսին հավասարման երկու կողմերին: Այս քայլը հավասարման ձախ կողմը դարձնում է լրիվ քառակուսի:
x^{2}+\frac{4}{5}x+\frac{4}{25}=-\frac{3}{5}+\frac{4}{25}
Բարձրացրեք քառակուսի \frac{2}{5}-ը՝ բարձրացնելով քառակուսի կոտորակի և համարիչը, և հայտարարը:
x^{2}+\frac{4}{5}x+\frac{4}{25}=-\frac{11}{25}
Գումարեք -\frac{3}{5} \frac{4}{25}-ին՝ գտնելով ընդհանուր հայտարարը և գումարելով համարիչները: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը մինչև ամենացածր անդամը:
\left(x+\frac{2}{5}\right)^{2}=-\frac{11}{25}
Գործոն x^{2}+\frac{4}{5}x+\frac{4}{25}: Ընդհանուր առմամբ, երբ x^{2}+bx+c մաքուր քառակուսի թիվ է, այն միշտ կարելի է համարել \left(x+\frac{b}{2}\right)^{2} ամբողջ մաս։
\sqrt{\left(x+\frac{2}{5}\right)^{2}}=\sqrt{-\frac{11}{25}}
Բարձրացրեք քառակուսի արմատ հավասարման երկու կողմերը:
x+\frac{2}{5}=\frac{\sqrt{11}i}{5} x+\frac{2}{5}=-\frac{\sqrt{11}i}{5}
Պարզեցնել:
x=\frac{-2+\sqrt{11}i}{5} x=\frac{-\sqrt{11}i-2}{5}
Հանեք \frac{2}{5} հավասարման երկու կողմից:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}