Skip դեպի հիմնական բովանդակությունը
Լուծել x-ի համար
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

x\left(3x-25\right)=0
Բաժանեք x բազմապատիկի վրա:
x=0 x=\frac{25}{3}
Հավասարման լուծումները գտնելու համար լուծեք x=0-ն և 3x-25=0-ն։
3x^{2}-25x=0
ax^{2}+bx+c=0 ձևի բոլոր հավասարությունները կարող են լուծվել քառակուսու բանաձևի միջոցով. \frac{-b±\sqrt{b^{2}-4ac}}{2a}: Քառակուսու բանաձևը երկու լուծում ունի, մեկը երբ ±-ը գումարում է, իսկ մյուսը, երբ հանում է:
x=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}}}{2\times 3}
Այս հավասարումը ստանդարտ ձևով է՝ ax^{2}+bx+c=0: \frac{-b±\sqrt{b^{2}-4ac}}{2a} քառ. հավ. արմ. բանաձևում փոխարինեք 3-ը a-ով, -25-ը b-ով և 0-ը c-ով:
x=\frac{-\left(-25\right)±25}{2\times 3}
Հանեք \left(-25\right)^{2}-ի քառակուսի արմատը:
x=\frac{25±25}{2\times 3}
-25 թվի հակադրությունը 25 է:
x=\frac{25±25}{6}
Բազմապատկեք 2 անգամ 3:
x=\frac{50}{6}
Այժմ լուծել x=\frac{25±25}{6} հավասարումը, երբ ±-ը պլյուս է: Գումարեք 25 25-ին:
x=\frac{25}{3}
Նվազեցնել \frac{50}{6} կոտորակը մինչև ամենափոքր արժեքների՝ արտահանելով և չեղարկելով 2-ը:
x=\frac{0}{6}
Այժմ լուծել x=\frac{25±25}{6} հավասարումը, երբ ±-ը մինուս է: Հանեք 25 25-ից:
x=0
Բաժանեք 0-ը 6-ի վրա:
x=\frac{25}{3} x=0
Հավասարումն այժմ լուծված է:
3x^{2}-25x=0
Սրա նման քառակուսի հավասարումները կարելի է լուծել՝ բարձրացնելով քառակուսի: Քառակուսի բարձրացնելու համար նախ հավասարումը պետք է լինի x^{2}+bx=c ձևով:
\frac{3x^{2}-25x}{3}=\frac{0}{3}
Բաժանեք երկու կողմերը 3-ի:
x^{2}-\frac{25}{3}x=\frac{0}{3}
Բաժանելով 3-ի՝ հետարկվում է 3-ով բազմապատկումը:
x^{2}-\frac{25}{3}x=0
Բաժանեք 0-ը 3-ի վրա:
x^{2}-\frac{25}{3}x+\left(-\frac{25}{6}\right)^{2}=\left(-\frac{25}{6}\right)^{2}
Բաժանեք -\frac{25}{3}-ը՝ x անդամի գործակիցը 2-ի և ստացեք -\frac{25}{6}-ը: Ապա գումարեք -\frac{25}{6}-ի քառակուսին հավասարման երկու կողմերին: Այս քայլը հավասարման ձախ կողմը դարձնում է լրիվ քառակուսի:
x^{2}-\frac{25}{3}x+\frac{625}{36}=\frac{625}{36}
Բարձրացրեք քառակուսի -\frac{25}{6}-ը՝ բարձրացնելով քառակուսի կոտորակի և համարիչը, և հայտարարը:
\left(x-\frac{25}{6}\right)^{2}=\frac{625}{36}
Գործոն x^{2}-\frac{25}{3}x+\frac{625}{36}: Ընդհանուր առմամբ, երբ x^{2}+bx+c մաքուր քառակուսի թիվ է, այն միշտ կարելի է համարել \left(x+\frac{b}{2}\right)^{2} ամբողջ մաս։
\sqrt{\left(x-\frac{25}{6}\right)^{2}}=\sqrt{\frac{625}{36}}
Բարձրացրեք քառակուսի արմատ հավասարման երկու կողմերը:
x-\frac{25}{6}=\frac{25}{6} x-\frac{25}{6}=-\frac{25}{6}
Պարզեցնել:
x=\frac{25}{3} x=0
Գումարեք \frac{25}{6} հավասարման երկու կողմին: