Skip դեպի հիմնական բովանդակությունը
Բազմապատիկ
Tick mark Image
Գնահատել
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

3\left(x^{2}-4x+4\right)
Բաժանեք 3 բազմապատիկի վրա:
\left(x-2\right)^{2}
Դիտարկեք x^{2}-4x+4: Օգտագործել լրիվ քառակուսու բանաձևը՝ a^{2}-2ab+b^{2}=\left(a-b\right)^{2}, որտեղ a=x և b=2։
3\left(x-2\right)^{2}
Վերագրեք բազմապատիկը ստացած ամբողջական արտահայտությունը:
factor(3x^{2}-12x+12)
Այս եռանդամն ունի եռանդամ քառակուսու ձև՝ բազմապատկված ընդհանուր բազմապատիկով: Եռանդամ քառակուսիների բազմապատիկը կարելի է գտնել՝ գտնելով առաջին կամ վերջին անդամների քառակուսի արմատները:
gcf(3,-12,12)=3
Գտեք գործակիցների ամենամեծ ընդհանուր բազմապատիկը:
3\left(x^{2}-4x+4\right)
Բաժանեք 3 բազմապատիկի վրա:
\sqrt{4}=2
Գտեք վերջին անդամի քառակուսի արմատը՝ 4:
3\left(x-2\right)^{2}
Եռանդամ քառակուսին երկանդամի քառակուսին է, որը առաջին կամ վերջին անդամների քառակուսի արմատների գումարը կամ տարբերությունն է, որը սահմանված է եռանդամ քառակուսու մեջտեղի անդամի նշանով:
3x^{2}-12x+12=0
Քառակուսի բազմանդամը կարող է բազմապատկիչների վերածվել՝ օգտագործելով հետևյալ փոխակերպումը՝ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), որտեղ x_{1}-ը և x_{2}-ը ax^{2}+bx+c=0 քառակուսային հավասարման լուծումներն են։
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 3\times 12}}{2\times 3}
ax^{2}+bx+c=0 ձևի բոլոր հավասարությունները կարող են լուծվել քառակուսու բանաձևի միջոցով. \frac{-b±\sqrt{b^{2}-4ac}}{2a}: Քառակուսու բանաձևը երկու լուծում ունի, մեկը երբ ±-ը գումարում է, իսկ մյուսը, երբ հանում է:
x=\frac{-\left(-12\right)±\sqrt{144-4\times 3\times 12}}{2\times 3}
-12-ի քառակուսի:
x=\frac{-\left(-12\right)±\sqrt{144-12\times 12}}{2\times 3}
Բազմապատկեք -4 անգամ 3:
x=\frac{-\left(-12\right)±\sqrt{144-144}}{2\times 3}
Բազմապատկեք -12 անգամ 12:
x=\frac{-\left(-12\right)±\sqrt{0}}{2\times 3}
Գումարեք 144 -144-ին:
x=\frac{-\left(-12\right)±0}{2\times 3}
Հանեք 0-ի քառակուսի արմատը:
x=\frac{12±0}{2\times 3}
-12 թվի հակադրությունը 12 է:
x=\frac{12±0}{6}
Բազմապատկեք 2 անգամ 3:
3x^{2}-12x+12=3\left(x-2\right)\left(x-2\right)
Ֆակտորացրեք բնօրինակ արտահայտությունը՝ օգտագործելով ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)։ Փոխարինեք 2-ը x_{1}-ի և 2-ը x_{2}-ի։