Լուծել x-ի համար
x = \frac{\sqrt{703} + 25}{3} \approx 17.171382389
x=\frac{25-\sqrt{703}}{3}\approx -0.504715722
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
3x^{2}-50x-26=0
ax^{2}+bx+c=0 ձևի բոլոր հավասարությունները կարող են լուծվել քառակուսու բանաձևի միջոցով. \frac{-b±\sqrt{b^{2}-4ac}}{2a}: Քառակուսու բանաձևը երկու լուծում ունի, մեկը երբ ±-ը գումարում է, իսկ մյուսը, երբ հանում է:
x=\frac{-\left(-50\right)±\sqrt{\left(-50\right)^{2}-4\times 3\left(-26\right)}}{2\times 3}
Այս հավասարումը ստանդարտ ձևով է՝ ax^{2}+bx+c=0: \frac{-b±\sqrt{b^{2}-4ac}}{2a} քառ. հավ. արմ. բանաձևում փոխարինեք 3-ը a-ով, -50-ը b-ով և -26-ը c-ով:
x=\frac{-\left(-50\right)±\sqrt{2500-4\times 3\left(-26\right)}}{2\times 3}
-50-ի քառակուսի:
x=\frac{-\left(-50\right)±\sqrt{2500-12\left(-26\right)}}{2\times 3}
Բազմապատկեք -4 անգամ 3:
x=\frac{-\left(-50\right)±\sqrt{2500+312}}{2\times 3}
Բազմապատկեք -12 անգամ -26:
x=\frac{-\left(-50\right)±\sqrt{2812}}{2\times 3}
Գումարեք 2500 312-ին:
x=\frac{-\left(-50\right)±2\sqrt{703}}{2\times 3}
Հանեք 2812-ի քառակուսի արմատը:
x=\frac{50±2\sqrt{703}}{2\times 3}
-50 թվի հակադրությունը 50 է:
x=\frac{50±2\sqrt{703}}{6}
Բազմապատկեք 2 անգամ 3:
x=\frac{2\sqrt{703}+50}{6}
Այժմ լուծել x=\frac{50±2\sqrt{703}}{6} հավասարումը, երբ ±-ը պլյուս է: Գումարեք 50 2\sqrt{703}-ին:
x=\frac{\sqrt{703}+25}{3}
Բաժանեք 50+2\sqrt{703}-ը 6-ի վրա:
x=\frac{50-2\sqrt{703}}{6}
Այժմ լուծել x=\frac{50±2\sqrt{703}}{6} հավասարումը, երբ ±-ը մինուս է: Հանեք 2\sqrt{703} 50-ից:
x=\frac{25-\sqrt{703}}{3}
Բաժանեք 50-2\sqrt{703}-ը 6-ի վրա:
x=\frac{\sqrt{703}+25}{3} x=\frac{25-\sqrt{703}}{3}
Հավասարումն այժմ լուծված է:
3x^{2}-50x-26=0
Սրա նման քառակուսի հավասարումները կարելի է լուծել՝ բարձրացնելով քառակուսի: Քառակուսի բարձրացնելու համար նախ հավասարումը պետք է լինի x^{2}+bx=c ձևով:
3x^{2}-50x-26-\left(-26\right)=-\left(-26\right)
Գումարեք 26 հավասարման երկու կողմին:
3x^{2}-50x=-\left(-26\right)
Հանելով -26 իրենից՝ մնում է 0:
3x^{2}-50x=26
Հանեք -26 0-ից:
\frac{3x^{2}-50x}{3}=\frac{26}{3}
Բաժանեք երկու կողմերը 3-ի:
x^{2}-\frac{50}{3}x=\frac{26}{3}
Բաժանելով 3-ի՝ հետարկվում է 3-ով բազմապատկումը:
x^{2}-\frac{50}{3}x+\left(-\frac{25}{3}\right)^{2}=\frac{26}{3}+\left(-\frac{25}{3}\right)^{2}
Բաժանեք -\frac{50}{3}-ը՝ x անդամի գործակիցը 2-ի և ստացեք -\frac{25}{3}-ը: Ապա գումարեք -\frac{25}{3}-ի քառակուսին հավասարման երկու կողմերին: Այս քայլը հավասարման ձախ կողմը դարձնում է լրիվ քառակուսի:
x^{2}-\frac{50}{3}x+\frac{625}{9}=\frac{26}{3}+\frac{625}{9}
Բարձրացրեք քառակուսի -\frac{25}{3}-ը՝ բարձրացնելով քառակուսի կոտորակի և համարիչը, և հայտարարը:
x^{2}-\frac{50}{3}x+\frac{625}{9}=\frac{703}{9}
Գումարեք \frac{26}{3} \frac{625}{9}-ին՝ գտնելով ընդհանուր հայտարարը և գումարելով համարիչները: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը մինչև ամենացածր անդամը:
\left(x-\frac{25}{3}\right)^{2}=\frac{703}{9}
x^{2}-\frac{50}{3}x+\frac{625}{9} բազմապատիկ: Սովորաբար, երբ x^{2}+bx+c-ը լրիվ քառակուսի է, նրա բազմապատիկը միշտ կարելի է ստանալ հետևյալ ձևով՝ \left(x+\frac{b}{2}\right)^{2}:
\sqrt{\left(x-\frac{25}{3}\right)^{2}}=\sqrt{\frac{703}{9}}
Բարձրացրեք քառակուսի արմատ հավասարման երկու կողմերը:
x-\frac{25}{3}=\frac{\sqrt{703}}{3} x-\frac{25}{3}=-\frac{\sqrt{703}}{3}
Պարզեցնել:
x=\frac{\sqrt{703}+25}{3} x=\frac{25-\sqrt{703}}{3}
Գումարեք \frac{25}{3} հավասարման երկու կողմին:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}