Skip դեպի հիմնական բովանդակությունը
Բազմապատիկ
Tick mark Image
Գնահատել
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

a+b=17 ab=3\times 10=30
Դուրս բերեք արտահայտությունը խմբավորելով։ Նախ, արտահայտութունը պետք է գրվի այսպես՝ 3x^{2}+ax+bx+10։ a-ը և b-ը գտնելու համար ստեղծեք լուծելու համակարգ։
1,30 2,15 3,10 5,6
Քանի որ ab-ն դրական է, a-ն և b-ն նույն նշանն ունեն։ Քանի որ a+b-ն դրական է, a-ն և b-ն երկուսն էլ դրական են։ Թվարկեք բոլոր այն ամբողջ թվով զույգերը, որոնց արդյունքը 30 է։
1+30=31 2+15=17 3+10=13 5+6=11
Հաշվարկեք յուրաքանչյուր զույգի գումարը։
a=2 b=15
Լուծումը այն զույգն է, որը տալիս է 17 գումար։
\left(3x^{2}+2x\right)+\left(15x+10\right)
Նորից գրեք 3x^{2}+17x+10-ը \left(3x^{2}+2x\right)+\left(15x+10\right)-ի տեսքով:
x\left(3x+2\right)+5\left(3x+2\right)
Դուրս բերել x-ը առաջին իսկ 5-ը՝ երկրորդ խմբում։
\left(3x+2\right)\left(x+5\right)
Ֆակտորացրեք 3x+2 սովորական անդամը՝ օգտագործելով բաժանիչ հատկություն:
3x^{2}+17x+10=0
Քառակուսի բազմանդամը կարող է բազմապատկիչների վերածվել՝ օգտագործելով հետևյալ փոխակերպումը՝ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), որտեղ x_{1}-ը և x_{2}-ը ax^{2}+bx+c=0 քառակուսային հավասարման լուծումներն են։
x=\frac{-17±\sqrt{17^{2}-4\times 3\times 10}}{2\times 3}
ax^{2}+bx+c=0 ձևի բոլոր հավասարությունները կարող են լուծվել քառակուսու բանաձևի միջոցով. \frac{-b±\sqrt{b^{2}-4ac}}{2a}: Քառակուսու բանաձևը երկու լուծում ունի, մեկը երբ ±-ը գումարում է, իսկ մյուսը, երբ հանում է:
x=\frac{-17±\sqrt{289-4\times 3\times 10}}{2\times 3}
17-ի քառակուսի:
x=\frac{-17±\sqrt{289-12\times 10}}{2\times 3}
Բազմապատկեք -4 անգամ 3:
x=\frac{-17±\sqrt{289-120}}{2\times 3}
Բազմապատկեք -12 անգամ 10:
x=\frac{-17±\sqrt{169}}{2\times 3}
Գումարեք 289 -120-ին:
x=\frac{-17±13}{2\times 3}
Հանեք 169-ի քառակուսի արմատը:
x=\frac{-17±13}{6}
Բազմապատկեք 2 անգամ 3:
x=-\frac{4}{6}
Այժմ լուծել x=\frac{-17±13}{6} հավասարումը, երբ ±-ը պլյուս է: Գումարեք -17 13-ին:
x=-\frac{2}{3}
Նվազեցնել \frac{-4}{6} կոտորակը մինչև ամենափոքր արժեքների՝ արտահանելով և չեղարկելով 2-ը:
x=-\frac{30}{6}
Այժմ լուծել x=\frac{-17±13}{6} հավասարումը, երբ ±-ը մինուս է: Հանեք 13 -17-ից:
x=-5
Բաժանեք -30-ը 6-ի վրա:
3x^{2}+17x+10=3\left(x-\left(-\frac{2}{3}\right)\right)\left(x-\left(-5\right)\right)
Ֆակտորացրեք բնօրինակ արտահայտությունը՝ օգտագործելով ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)։ Փոխարինեք -\frac{2}{3}-ը x_{1}-ի և -5-ը x_{2}-ի։
3x^{2}+17x+10=3\left(x+\frac{2}{3}\right)\left(x+5\right)
Պարզեցրեք p-\left(-q\right) ձևի բոլոր արտահայտությունները p+q-ի:
3x^{2}+17x+10=3\times \frac{3x+2}{3}\left(x+5\right)
Գումարեք \frac{2}{3} x-ին՝ գտնելով ընդհանուր հայտարարը և գումարելով համարիչները: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը մինչև ամենացածր անդամը:
3x^{2}+17x+10=\left(3x+2\right)\left(x+5\right)
Չեղարկել ամենամեծ ընդհանուր գործոն 3-ը 3-ում և 3-ում: