Skip դեպի հիմնական բովանդակությունը
Լուծել x-ի համար (complex solution)
Tick mark Image
Լուծել x-ի համար
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

±28,±56,±14,±7,±4,±8,±\frac{7}{2},±2,±1,±\frac{1}{2}
Ըստ Ռացիոնալ արմատի թեորեմի՝ բազմանդամի բոլոր ռացիոնալ արմատները \frac{p}{q} տեսքով են, որտեղ p բաժանում է 56 հաստատուն անդամը, իսկ q բաժանում է 2 առաջատար գործակիցը: Նշել բոլոր թեկնածուները \frac{p}{q}:
x=-2
Գտեք մեկ արմատ՝ փորձելով բոլոր ամբողջ թվով արժեքները, սկսած ամենափոքրից մինչև բացարձակ արժեք: Եթե ոչ մի ամբողջ թվով արմատ չգտնվի, փորձեք կոտորակները:
2x^{3}+3x^{2}-6x+28=0
Ըստ Բազմապատիկի թեորեմի՝ x-k-ը բազմանդամի բազմապատիկն է յուրաքանչյուր k արմատի համար: Բաժանեք 2x^{4}+7x^{3}+16x+56 x+2-ի և ստացեք 2x^{3}+3x^{2}-6x+28: Լուծեք հավասարումը, որտեղ արդյունքը հավասարվում է 0:
±14,±28,±7,±\frac{7}{2},±2,±4,±1,±\frac{1}{2}
Ըստ Ռացիոնալ արմատի թեորեմի՝ բազմանդամի բոլոր ռացիոնալ արմատները \frac{p}{q} տեսքով են, որտեղ p բաժանում է 28 հաստատուն անդամը, իսկ q բաժանում է 2 առաջատար գործակիցը: Նշել բոլոր թեկնածուները \frac{p}{q}:
x=-\frac{7}{2}
Գտեք մեկ արմատ՝ փորձելով բոլոր ամբողջ թվով արժեքները, սկսած ամենափոքրից մինչև բացարձակ արժեք: Եթե ոչ մի ամբողջ թվով արմատ չգտնվի, փորձեք կոտորակները:
x^{2}-2x+4=0
Ըստ Բազմապատիկի թեորեմի՝ x-k-ը բազմանդամի բազմապատիկն է յուրաքանչյուր k արմատի համար: Բաժանեք 2x^{3}+3x^{2}-6x+28 2\left(x+\frac{7}{2}\right)=2x+7-ի և ստացեք x^{2}-2x+4: Լուծեք հավասարումը, որտեղ արդյունքը հավասարվում է 0:
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 1\times 4}}{2}
Հետևյալ ձևի բոլոր հավասարումները՝ ax^{2}+bx+c=0 կարող են լուծվել քառ. հավ. արմ. բանաձևի միջոցով՝ \frac{-b±\sqrt{b^{2}-4ac}}{2a}: Քառ. հավ. արմ. բանաձևում փոխարինեք 1-ը a-ով, -2-ը b-ով և 4-ը c-ով:
x=\frac{2±\sqrt{-12}}{2}
Կատարեք հաշվարկումներ:
x=-\sqrt{3}i+1 x=1+\sqrt{3}i
Լուծեք x^{2}-2x+4=0 հավասարումը, երբ ±-ը գումարած է և երբ ±-ը հանած է:
x=-2 x=-\frac{7}{2} x=-\sqrt{3}i+1 x=1+\sqrt{3}i
Թվարկեք բոլոր գտնված լուծումները:
±28,±56,±14,±7,±4,±8,±\frac{7}{2},±2,±1,±\frac{1}{2}
Ըստ Ռացիոնալ արմատի թեորեմի՝ բազմանդամի բոլոր ռացիոնալ արմատները \frac{p}{q} տեսքով են, որտեղ p բաժանում է 56 հաստատուն անդամը, իսկ q բաժանում է 2 առաջատար գործակիցը: Նշել բոլոր թեկնածուները \frac{p}{q}:
x=-2
Գտեք մեկ արմատ՝ փորձելով բոլոր ամբողջ թվով արժեքները, սկսած ամենափոքրից մինչև բացարձակ արժեք: Եթե ոչ մի ամբողջ թվով արմատ չգտնվի, փորձեք կոտորակները:
2x^{3}+3x^{2}-6x+28=0
Ըստ Բազմապատիկի թեորեմի՝ x-k-ը բազմանդամի բազմապատիկն է յուրաքանչյուր k արմատի համար: Բաժանեք 2x^{4}+7x^{3}+16x+56 x+2-ի և ստացեք 2x^{3}+3x^{2}-6x+28: Լուծեք հավասարումը, որտեղ արդյունքը հավասարվում է 0:
±14,±28,±7,±\frac{7}{2},±2,±4,±1,±\frac{1}{2}
Ըստ Ռացիոնալ արմատի թեորեմի՝ բազմանդամի բոլոր ռացիոնալ արմատները \frac{p}{q} տեսքով են, որտեղ p բաժանում է 28 հաստատուն անդամը, իսկ q բաժանում է 2 առաջատար գործակիցը: Նշել բոլոր թեկնածուները \frac{p}{q}:
x=-\frac{7}{2}
Գտեք մեկ արմատ՝ փորձելով բոլոր ամբողջ թվով արժեքները, սկսած ամենափոքրից մինչև բացարձակ արժեք: Եթե ոչ մի ամբողջ թվով արմատ չգտնվի, փորձեք կոտորակները:
x^{2}-2x+4=0
Ըստ Բազմապատիկի թեորեմի՝ x-k-ը բազմանդամի բազմապատիկն է յուրաքանչյուր k արմատի համար: Բաժանեք 2x^{3}+3x^{2}-6x+28 2\left(x+\frac{7}{2}\right)=2x+7-ի և ստացեք x^{2}-2x+4: Լուծեք հավասարումը, որտեղ արդյունքը հավասարվում է 0:
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 1\times 4}}{2}
Հետևյալ ձևի բոլոր հավասարումները՝ ax^{2}+bx+c=0 կարող են լուծվել քառ. հավ. արմ. բանաձևի միջոցով՝ \frac{-b±\sqrt{b^{2}-4ac}}{2a}: Քառ. հավ. արմ. բանաձևում փոխարինեք 1-ը a-ով, -2-ը b-ով և 4-ը c-ով:
x=\frac{2±\sqrt{-12}}{2}
Կատարեք հաշվարկումներ:
x\in \emptyset
Քանի որ բացասական թվի քառակուսի արմատը նշված չէ իրական դաշտում, ուրեմն լուծումներ չկան:
x=-2 x=-\frac{7}{2}
Թվարկեք բոլոր գտնված լուծումները: