Լուծել x-ի համար (complex solution)
x=\frac{-3\sqrt{3}i-3}{2}\approx -1.5-2.598076211i
x=3
x=\frac{-3+3\sqrt{3}i}{2}\approx -1.5+2.598076211i
Լուծել x-ի համար
x=3
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
x^{3}=\frac{54}{2}
Բաժանեք երկու կողմերը 2-ի:
x^{3}=27
Բաժանեք 54 2-ի և ստացեք 27:
x^{3}-27=0
Հանեք 27 երկու կողմերից:
±27,±9,±3,±1
Ըստ Ռացիոնալ արմատի թեորեմի՝ բազմանդամի բոլոր ռացիոնալ արմատները \frac{p}{q} տեսքով են, որտեղ p բաժանում է -27 հաստատուն անդամը, իսկ q բաժանում է 1 առաջատար գործակիցը: Նշել բոլոր թեկնածուները \frac{p}{q}:
x=3
Գտեք մեկ արմատ՝ փորձելով բոլոր ամբողջ թվով արժեքները, սկսած ամենափոքրից մինչև բացարձակ արժեք: Եթե ոչ մի ամբողջ թվով արմատ չգտնվի, փորձեք կոտորակները:
x^{2}+3x+9=0
Ըստ Բազմապատիկի թեորեմի՝ x-k-ը բազմանդամի բազմապատիկն է յուրաքանչյուր k արմատի համար: Բաժանեք x^{3}-27 x-3-ի և ստացեք x^{2}+3x+9: Լուծեք հավասարումը, որտեղ արդյունքը հավասարվում է 0:
x=\frac{-3±\sqrt{3^{2}-4\times 1\times 9}}{2}
Հետևյալ ձևի բոլոր հավասարումները՝ ax^{2}+bx+c=0 կարող են լուծվել քառ. հավ. արմ. բանաձևի միջոցով՝ \frac{-b±\sqrt{b^{2}-4ac}}{2a}: Քառ. հավ. արմ. բանաձևում փոխարինեք 1-ը a-ով, 3-ը b-ով և 9-ը c-ով:
x=\frac{-3±\sqrt{-27}}{2}
Կատարեք հաշվարկումներ:
x=\frac{-3i\sqrt{3}-3}{2} x=\frac{-3+3i\sqrt{3}}{2}
Լուծեք x^{2}+3x+9=0 հավասարումը, երբ ±-ը գումարած է և երբ ±-ը հանած է:
x=3 x=\frac{-3i\sqrt{3}-3}{2} x=\frac{-3+3i\sqrt{3}}{2}
Թվարկեք բոլոր գտնված լուծումները:
x^{3}=\frac{54}{2}
Բաժանեք երկու կողմերը 2-ի:
x^{3}=27
Բաժանեք 54 2-ի և ստացեք 27:
x^{3}-27=0
Հանեք 27 երկու կողմերից:
±27,±9,±3,±1
Ըստ Ռացիոնալ արմատի թեորեմի՝ բազմանդամի բոլոր ռացիոնալ արմատները \frac{p}{q} տեսքով են, որտեղ p բաժանում է -27 հաստատուն անդամը, իսկ q բաժանում է 1 առաջատար գործակիցը: Նշել բոլոր թեկնածուները \frac{p}{q}:
x=3
Գտեք մեկ արմատ՝ փորձելով բոլոր ամբողջ թվով արժեքները, սկսած ամենափոքրից մինչև բացարձակ արժեք: Եթե ոչ մի ամբողջ թվով արմատ չգտնվի, փորձեք կոտորակները:
x^{2}+3x+9=0
Ըստ Բազմապատիկի թեորեմի՝ x-k-ը բազմանդամի բազմապատիկն է յուրաքանչյուր k արմատի համար: Բաժանեք x^{3}-27 x-3-ի և ստացեք x^{2}+3x+9: Լուծեք հավասարումը, որտեղ արդյունքը հավասարվում է 0:
x=\frac{-3±\sqrt{3^{2}-4\times 1\times 9}}{2}
Հետևյալ ձևի բոլոր հավասարումները՝ ax^{2}+bx+c=0 կարող են լուծվել քառ. հավ. արմ. բանաձևի միջոցով՝ \frac{-b±\sqrt{b^{2}-4ac}}{2a}: Քառ. հավ. արմ. բանաձևում փոխարինեք 1-ը a-ով, 3-ը b-ով և 9-ը c-ով:
x=\frac{-3±\sqrt{-27}}{2}
Կատարեք հաշվարկումներ:
x\in \emptyset
Քանի որ բացասական թվի քառակուսի արմատը նշված չէ իրական դաշտում, ուրեմն լուծումներ չկան:
x=3
Թվարկեք բոլոր գտնված լուծումները:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}