Լուծել x-ի համար
x=-4
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
a+b=5 ab=2\left(-12\right)=-24
Հավասարումը լուծելու համար դուրս բերեք ձախ հատվածը՝ խմբավորման միջոցով։ Նախ, ձախ հատվածը պետք է գրվի այսպես՝ 2x^{2}+ax+bx-12։ a-ը և b-ը գտնելու համար ստեղծեք լուծելու համակարգ։
-1,24 -2,12 -3,8 -4,6
Քանի որ ab-ն բացասական է, a-ն և b-ն հակառակ նշաններն ունեն։ Քանի որ a+b-ն դրական է, դրական թիվը ավելի մեծ բացարձակ արժեք ունի, քան բացասականը։ Թվարկեք բոլոր այն ամբողջ թվով զույգերը, որոնց արդյունքը -24 է։
-1+24=23 -2+12=10 -3+8=5 -4+6=2
Հաշվարկեք յուրաքանչյուր զույգի գումարը։
a=-3 b=8
Լուծումը այն զույգն է, որը տալիս է 5 գումար։
\left(2x^{2}-3x\right)+\left(8x-12\right)
Նորից գրեք 2x^{2}+5x-12-ը \left(2x^{2}-3x\right)+\left(8x-12\right)-ի տեսքով:
x\left(2x-3\right)+4\left(2x-3\right)
Դուրս բերել x-ը առաջին իսկ 4-ը՝ երկրորդ խմբում։
\left(2x-3\right)\left(x+4\right)
Ֆակտորացրեք 2x-3 սովորական անդամը՝ օգտագործելով բաժանիչ հատկություն:
x=\frac{3}{2} x=-4
Հավասարման լուծումները գտնելու համար լուծեք 2x-3=0-ն և x+4=0-ն։
2x^{2}+5x-12=0
ax^{2}+bx+c=0 ձևի բոլոր հավասարությունները կարող են լուծվել քառակուսու բանաձևի միջոցով. \frac{-b±\sqrt{b^{2}-4ac}}{2a}: Քառակուսու բանաձևը երկու լուծում ունի, մեկը երբ ±-ը գումարում է, իսկ մյուսը, երբ հանում է:
x=\frac{-5±\sqrt{5^{2}-4\times 2\left(-12\right)}}{2\times 2}
Այս հավասարումը ստանդարտ ձևով է՝ ax^{2}+bx+c=0: \frac{-b±\sqrt{b^{2}-4ac}}{2a} քառ. հավ. արմ. բանաձևում փոխարինեք 2-ը a-ով, 5-ը b-ով և -12-ը c-ով:
x=\frac{-5±\sqrt{25-4\times 2\left(-12\right)}}{2\times 2}
5-ի քառակուսի:
x=\frac{-5±\sqrt{25-8\left(-12\right)}}{2\times 2}
Բազմապատկեք -4 անգամ 2:
x=\frac{-5±\sqrt{25+96}}{2\times 2}
Բազմապատկեք -8 անգամ -12:
x=\frac{-5±\sqrt{121}}{2\times 2}
Գումարեք 25 96-ին:
x=\frac{-5±11}{2\times 2}
Հանեք 121-ի քառակուսի արմատը:
x=\frac{-5±11}{4}
Բազմապատկեք 2 անգամ 2:
x=\frac{6}{4}
Այժմ լուծել x=\frac{-5±11}{4} հավասարումը, երբ ±-ը պլյուս է: Գումարեք -5 11-ին:
x=\frac{3}{2}
Նվազեցնել \frac{6}{4} կոտորակը մինչև ամենափոքր արժեքների՝ արտահանելով և չեղարկելով 2-ը:
x=-\frac{16}{4}
Այժմ լուծել x=\frac{-5±11}{4} հավասարումը, երբ ±-ը մինուս է: Հանեք 11 -5-ից:
x=-4
Բաժանեք -16-ը 4-ի վրա:
x=\frac{3}{2} x=-4
Հավասարումն այժմ լուծված է:
2x^{2}+5x-12=0
Սրա նման քառակուսի հավասարումները կարելի է լուծել՝ բարձրացնելով քառակուսի: Քառակուսի բարձրացնելու համար նախ հավասարումը պետք է լինի x^{2}+bx=c ձևով:
2x^{2}+5x-12-\left(-12\right)=-\left(-12\right)
Գումարեք 12 հավասարման երկու կողմին:
2x^{2}+5x=-\left(-12\right)
Հանելով -12 իրենից՝ մնում է 0:
2x^{2}+5x=12
Հանեք -12 0-ից:
\frac{2x^{2}+5x}{2}=\frac{12}{2}
Բաժանեք երկու կողմերը 2-ի:
x^{2}+\frac{5}{2}x=\frac{12}{2}
Բաժանելով 2-ի՝ հետարկվում է 2-ով բազմապատկումը:
x^{2}+\frac{5}{2}x=6
Բաժանեք 12-ը 2-ի վրա:
x^{2}+\frac{5}{2}x+\left(\frac{5}{4}\right)^{2}=6+\left(\frac{5}{4}\right)^{2}
Բաժանեք \frac{5}{2}-ը՝ x անդամի գործակիցը 2-ի և ստացեք \frac{5}{4}-ը: Ապա գումարեք \frac{5}{4}-ի քառակուսին հավասարման երկու կողմերին: Այս քայլը հավասարման ձախ կողմը դարձնում է լրիվ քառակուսի:
x^{2}+\frac{5}{2}x+\frac{25}{16}=6+\frac{25}{16}
Բարձրացրեք քառակուսի \frac{5}{4}-ը՝ բարձրացնելով քառակուսի կոտորակի և համարիչը, և հայտարարը:
x^{2}+\frac{5}{2}x+\frac{25}{16}=\frac{121}{16}
Գումարեք 6 \frac{25}{16}-ին:
\left(x+\frac{5}{4}\right)^{2}=\frac{121}{16}
Գործոն x^{2}+\frac{5}{2}x+\frac{25}{16}: Ընդհանուր առմամբ, երբ x^{2}+bx+c մաքուր քառակուսի թիվ է, այն միշտ կարելի է համարել \left(x+\frac{b}{2}\right)^{2} ամբողջ մաս։
\sqrt{\left(x+\frac{5}{4}\right)^{2}}=\sqrt{\frac{121}{16}}
Բարձրացրեք քառակուսի արմատ հավասարման երկու կողմերը:
x+\frac{5}{4}=\frac{11}{4} x+\frac{5}{4}=-\frac{11}{4}
Պարզեցնել:
x=\frac{3}{2} x=-4
Հանեք \frac{5}{4} հավասարման երկու կողմից:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}