Skip դեպի հիմնական բովանդակությունը
Բազմապատիկ
Tick mark Image
Գնահատել
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

a+b=5 ab=2\times 2=4
Դուրս բերեք արտահայտությունը խմբավորելով։ Նախ, արտահայտութունը պետք է գրվի այսպես՝ 2x^{2}+ax+bx+2։ a-ը և b-ը գտնելու համար ստեղծեք լուծելու համակարգ։
1,4 2,2
Քանի որ ab-ն դրական է, a-ն և b-ն նույն նշանն ունեն։ Քանի որ a+b-ն դրական է, a-ն և b-ն երկուսն էլ դրական են։ Թվարկեք բոլոր այն ամբողջ թվով զույգերը, որոնց արդյունքը 4 է։
1+4=5 2+2=4
Հաշվարկեք յուրաքանչյուր զույգի գումարը։
a=1 b=4
Լուծումը այն զույգն է, որը տալիս է 5 գումար։
\left(2x^{2}+x\right)+\left(4x+2\right)
Նորից գրեք 2x^{2}+5x+2-ը \left(2x^{2}+x\right)+\left(4x+2\right)-ի տեսքով:
x\left(2x+1\right)+2\left(2x+1\right)
Դուրս բերել x-ը առաջին իսկ 2-ը՝ երկրորդ խմբում։
\left(2x+1\right)\left(x+2\right)
Ֆակտորացրեք 2x+1 սովորական անդամը՝ օգտագործելով բաժանիչ հատկություն:
2x^{2}+5x+2=0
Քառակուսի բազմանդամը կարող է բազմապատկիչների վերածվել՝ օգտագործելով հետևյալ փոխակերպումը՝ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), որտեղ x_{1}-ը և x_{2}-ը ax^{2}+bx+c=0 քառակուսային հավասարման լուծումներն են։
x=\frac{-5±\sqrt{5^{2}-4\times 2\times 2}}{2\times 2}
ax^{2}+bx+c=0 ձևի բոլոր հավասարությունները կարող են լուծվել քառակուսու բանաձևի միջոցով. \frac{-b±\sqrt{b^{2}-4ac}}{2a}: Քառակուսու բանաձևը երկու լուծում ունի, մեկը երբ ±-ը գումարում է, իսկ մյուսը, երբ հանում է:
x=\frac{-5±\sqrt{25-4\times 2\times 2}}{2\times 2}
5-ի քառակուսի:
x=\frac{-5±\sqrt{25-8\times 2}}{2\times 2}
Բազմապատկեք -4 անգամ 2:
x=\frac{-5±\sqrt{25-16}}{2\times 2}
Բազմապատկեք -8 անգամ 2:
x=\frac{-5±\sqrt{9}}{2\times 2}
Գումարեք 25 -16-ին:
x=\frac{-5±3}{2\times 2}
Հանեք 9-ի քառակուսի արմատը:
x=\frac{-5±3}{4}
Բազմապատկեք 2 անգամ 2:
x=-\frac{2}{4}
Այժմ լուծել x=\frac{-5±3}{4} հավասարումը, երբ ±-ը պլյուս է: Գումարեք -5 3-ին:
x=-\frac{1}{2}
Նվազեցնել \frac{-2}{4} կոտորակը մինչև ամենափոքր արժեքների՝ արտահանելով և չեղարկելով 2-ը:
x=-\frac{8}{4}
Այժմ լուծել x=\frac{-5±3}{4} հավասարումը, երբ ±-ը մինուս է: Հանեք 3 -5-ից:
x=-2
Բաժանեք -8-ը 4-ի վրա:
2x^{2}+5x+2=2\left(x-\left(-\frac{1}{2}\right)\right)\left(x-\left(-2\right)\right)
Ֆակտորացրեք բնօրինակ արտահայտությունը՝ օգտագործելով ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)։ Փոխարինեք -\frac{1}{2}-ը x_{1}-ի և -2-ը x_{2}-ի։
2x^{2}+5x+2=2\left(x+\frac{1}{2}\right)\left(x+2\right)
Պարզեցրեք p-\left(-q\right) ձևի բոլոր արտահայտությունները p+q-ի:
2x^{2}+5x+2=2\times \frac{2x+1}{2}\left(x+2\right)
Գումարեք \frac{1}{2} x-ին՝ գտնելով ընդհանուր հայտարարը և գումարելով համարիչները: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը մինչև ամենացածր անդամը:
2x^{2}+5x+2=\left(2x+1\right)\left(x+2\right)
Չեղարկել ամենամեծ ընդհանուր գործոն 2-ը 2-ում և 2-ում: