Լուծել x-ի համար
x=-2
x=4
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
2x^{2}-4x-16=0
Հանեք 16 երկու կողմերից:
x^{2}-2x-8=0
Բաժանեք երկու կողմերը 2-ի:
a+b=-2 ab=1\left(-8\right)=-8
Հավասարումը լուծելու համար դուրս բերեք ձախ հատվածը՝ խմբավորման միջոցով։ Նախ, ձախ հատվածը պետք է գրվի այսպես՝ x^{2}+ax+bx-8։ a-ը և b-ը գտնելու համար ստեղծեք լուծելու համակարգ։
1,-8 2,-4
Քանի որ ab-ն բացասական է, a-ն և b-ն հակառակ նշաններն ունեն։ Քանի որ a+b-ն բացասական է, բացասական թիվը ավելի մեծ բացարձակ արժեք ունի, քան դրականը։ Թվարկեք բոլոր այն ամբողջ թվով զույգերը, որոնց արդյունքը -8 է։
1-8=-7 2-4=-2
Հաշվարկեք յուրաքանչյուր զույգի գումարը։
a=-4 b=2
Լուծումը այն զույգն է, որը տալիս է -2 գումար։
\left(x^{2}-4x\right)+\left(2x-8\right)
Նորից գրեք x^{2}-2x-8-ը \left(x^{2}-4x\right)+\left(2x-8\right)-ի տեսքով:
x\left(x-4\right)+2\left(x-4\right)
Դուրս բերել x-ը առաջին իսկ 2-ը՝ երկրորդ խմբում։
\left(x-4\right)\left(x+2\right)
Ֆակտորացրեք x-4 սովորական անդամը՝ օգտագործելով բաժանիչ հատկություն:
x=4 x=-2
Հավասարման լուծումները գտնելու համար լուծեք x-4=0-ն և x+2=0-ն։
2x^{2}-4x=16
ax^{2}+bx+c=0 ձևի բոլոր հավասարությունները կարող են լուծվել քառակուսու բանաձևի միջոցով. \frac{-b±\sqrt{b^{2}-4ac}}{2a}: Քառակուսու բանաձևը երկու լուծում ունի, մեկը երբ ±-ը գումարում է, իսկ մյուսը, երբ հանում է:
2x^{2}-4x-16=16-16
Հանեք 16 հավասարման երկու կողմից:
2x^{2}-4x-16=0
Հանելով 16 իրենից՝ մնում է 0:
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\left(-16\right)}}{2\times 2}
Այս հավասարումը ստանդարտ ձևով է՝ ax^{2}+bx+c=0: \frac{-b±\sqrt{b^{2}-4ac}}{2a} քառ. հավ. արմ. բանաձևում փոխարինեք 2-ը a-ով, -4-ը b-ով և -16-ը c-ով:
x=\frac{-\left(-4\right)±\sqrt{16-4\times 2\left(-16\right)}}{2\times 2}
-4-ի քառակուսի:
x=\frac{-\left(-4\right)±\sqrt{16-8\left(-16\right)}}{2\times 2}
Բազմապատկեք -4 անգամ 2:
x=\frac{-\left(-4\right)±\sqrt{16+128}}{2\times 2}
Բազմապատկեք -8 անգամ -16:
x=\frac{-\left(-4\right)±\sqrt{144}}{2\times 2}
Գումարեք 16 128-ին:
x=\frac{-\left(-4\right)±12}{2\times 2}
Հանեք 144-ի քառակուսի արմատը:
x=\frac{4±12}{2\times 2}
-4 թվի հակադրությունը 4 է:
x=\frac{4±12}{4}
Բազմապատկեք 2 անգամ 2:
x=\frac{16}{4}
Այժմ լուծել x=\frac{4±12}{4} հավասարումը, երբ ±-ը պլյուս է: Գումարեք 4 12-ին:
x=4
Բաժանեք 16-ը 4-ի վրա:
x=-\frac{8}{4}
Այժմ լուծել x=\frac{4±12}{4} հավասարումը, երբ ±-ը մինուս է: Հանեք 12 4-ից:
x=-2
Բաժանեք -8-ը 4-ի վրա:
x=4 x=-2
Հավասարումն այժմ լուծված է:
2x^{2}-4x=16
Սրա նման քառակուսի հավասարումները կարելի է լուծել՝ բարձրացնելով քառակուսի: Քառակուսի բարձրացնելու համար նախ հավասարումը պետք է լինի x^{2}+bx=c ձևով:
\frac{2x^{2}-4x}{2}=\frac{16}{2}
Բաժանեք երկու կողմերը 2-ի:
x^{2}+\left(-\frac{4}{2}\right)x=\frac{16}{2}
Բաժանելով 2-ի՝ հետարկվում է 2-ով բազմապատկումը:
x^{2}-2x=\frac{16}{2}
Բաժանեք -4-ը 2-ի վրա:
x^{2}-2x=8
Բաժանեք 16-ը 2-ի վրա:
x^{2}-2x+1=8+1
Բաժանեք -2-ը՝ x անդամի գործակիցը 2-ի և ստացեք -1-ը: Ապա գումարեք -1-ի քառակուսին հավասարման երկու կողմերին: Այս քայլը հավասարման ձախ կողմը դարձնում է լրիվ քառակուսի:
x^{2}-2x+1=9
Գումարեք 8 1-ին:
\left(x-1\right)^{2}=9
Գործոն x^{2}-2x+1: Ընդհանուր առմամբ, երբ x^{2}+bx+c մաքուր քառակուսի թիվ է, այն միշտ կարելի է համարել \left(x+\frac{b}{2}\right)^{2} ամբողջ մաս։
\sqrt{\left(x-1\right)^{2}}=\sqrt{9}
Բարձրացրեք քառակուսի արմատ հավասարման երկու կողմերը:
x-1=3 x-1=-3
Պարզեցնել:
x=4 x=-2
Գումարեք 1 հավասարման երկու կողմին:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}