Բազմապատիկ
3\left(3x-4\right)\left(2x+1\right)
Գնահատել
18x^{2}-15x-12
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
3\left(6x^{2}-5x-4\right)
Բաժանեք 3 բազմապատիկի վրա:
a+b=-5 ab=6\left(-4\right)=-24
Դիտարկեք 6x^{2}-5x-4: Դուրս բերեք արտահայտությունը խմբավորելով։ Նախ, արտահայտութունը պետք է գրվի այսպես՝ 6x^{2}+ax+bx-4։ a-ը և b-ը գտնելու համար ստեղծեք լուծելու համակարգ։
1,-24 2,-12 3,-8 4,-6
Քանի որ ab-ն բացասական է, a-ն և b-ն հակառակ նշաններն ունեն։ Քանի որ a+b-ն բացասական է, բացասական թիվը ավելի մեծ բացարձակ արժեք ունի, քան դրականը։ Թվարկեք բոլոր այն ամբողջ թվով զույգերը, որոնց արդյունքը -24 է։
1-24=-23 2-12=-10 3-8=-5 4-6=-2
Հաշվարկեք յուրաքանչյուր զույգի գումարը։
a=-8 b=3
Լուծումը այն զույգն է, որը տալիս է -5 գումար։
\left(6x^{2}-8x\right)+\left(3x-4\right)
Նորից գրեք 6x^{2}-5x-4-ը \left(6x^{2}-8x\right)+\left(3x-4\right)-ի տեսքով:
2x\left(3x-4\right)+3x-4
Ֆակտորացրեք 2x-ը 6x^{2}-8x-ում։
\left(3x-4\right)\left(2x+1\right)
Ֆակտորացրեք 3x-4 սովորական անդամը՝ օգտագործելով բաժանիչ հատկություն:
3\left(3x-4\right)\left(2x+1\right)
Վերագրեք բազմապատիկը ստացած ամբողջական արտահայտությունը:
18x^{2}-15x-12=0
Քառակուսի բազմանդամը կարող է բազմապատկիչների վերածվել՝ օգտագործելով հետևյալ փոխակերպումը՝ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), որտեղ x_{1}-ը և x_{2}-ը ax^{2}+bx+c=0 քառակուսային հավասարման լուծումներն են։
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 18\left(-12\right)}}{2\times 18}
ax^{2}+bx+c=0 ձևի բոլոր հավասարությունները կարող են լուծվել քառակուսու բանաձևի միջոցով. \frac{-b±\sqrt{b^{2}-4ac}}{2a}: Քառակուսու բանաձևը երկու լուծում ունի, մեկը երբ ±-ը գումարում է, իսկ մյուսը, երբ հանում է:
x=\frac{-\left(-15\right)±\sqrt{225-4\times 18\left(-12\right)}}{2\times 18}
-15-ի քառակուսի:
x=\frac{-\left(-15\right)±\sqrt{225-72\left(-12\right)}}{2\times 18}
Բազմապատկեք -4 անգամ 18:
x=\frac{-\left(-15\right)±\sqrt{225+864}}{2\times 18}
Բազմապատկեք -72 անգամ -12:
x=\frac{-\left(-15\right)±\sqrt{1089}}{2\times 18}
Գումարեք 225 864-ին:
x=\frac{-\left(-15\right)±33}{2\times 18}
Հանեք 1089-ի քառակուսի արմատը:
x=\frac{15±33}{2\times 18}
-15 թվի հակադրությունը 15 է:
x=\frac{15±33}{36}
Բազմապատկեք 2 անգամ 18:
x=\frac{48}{36}
Այժմ լուծել x=\frac{15±33}{36} հավասարումը, երբ ±-ը պլյուս է: Գումարեք 15 33-ին:
x=\frac{4}{3}
Նվազեցնել \frac{48}{36} կոտորակը մինչև ամենափոքր արժեքների՝ արտահանելով և չեղարկելով 12-ը:
x=-\frac{18}{36}
Այժմ լուծել x=\frac{15±33}{36} հավասարումը, երբ ±-ը մինուս է: Հանեք 33 15-ից:
x=-\frac{1}{2}
Նվազեցնել \frac{-18}{36} կոտորակը մինչև ամենափոքր արժեքների՝ արտահանելով և չեղարկելով 18-ը:
18x^{2}-15x-12=18\left(x-\frac{4}{3}\right)\left(x-\left(-\frac{1}{2}\right)\right)
Ֆակտորացրեք բնօրինակ արտահայտությունը՝ օգտագործելով ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)։ Փոխարինեք \frac{4}{3}-ը x_{1}-ի և -\frac{1}{2}-ը x_{2}-ի։
18x^{2}-15x-12=18\left(x-\frac{4}{3}\right)\left(x+\frac{1}{2}\right)
Պարզեցրեք p-\left(-q\right) ձևի բոլոր արտահայտությունները p+q-ի:
18x^{2}-15x-12=18\times \frac{3x-4}{3}\left(x+\frac{1}{2}\right)
Հանեք \frac{4}{3} x-ից՝ գտնելով ընդհանուր հայտարարը և հանելով համարիչները: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը ամենափոքր անդամների:
18x^{2}-15x-12=18\times \frac{3x-4}{3}\times \frac{2x+1}{2}
Գումարեք \frac{1}{2} x-ին՝ գտնելով ընդհանուր հայտարարը և գումարելով համարիչները: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը մինչև ամենացածր անդամը:
18x^{2}-15x-12=18\times \frac{\left(3x-4\right)\left(2x+1\right)}{3\times 2}
Բազմապատկեք \frac{3x-4}{3} անգամ \frac{2x+1}{2}-ը՝ բազմապատկելով համարիչ անգամ համարիչ և հայտարար անգամ հայտարար: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը ամենացածր անդամների:
18x^{2}-15x-12=18\times \frac{\left(3x-4\right)\left(2x+1\right)}{6}
Բազմապատկեք 3 անգամ 2:
18x^{2}-15x-12=3\left(3x-4\right)\left(2x+1\right)
Չեղարկել ամենամեծ ընդհանուր գործոն 6-ը 18-ում և 6-ում:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}