Բազմապատիկ
2x\left(6-x\right)
Գնահատել
2x\left(6-x\right)
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
2\left(6x-x^{2}\right)
Բաժանեք 2 բազմապատիկի վրա:
x\left(6-x\right)
Դիտարկեք 6x-x^{2}: Բաժանեք x բազմապատիկի վրա:
2x\left(-x+6\right)
Վերագրեք բազմապատիկը ստացած ամբողջական արտահայտությունը:
-2x^{2}+12x=0
Քառակուսի բազմանդամը կարող է բազմապատկիչների վերածվել՝ օգտագործելով հետևյալ փոխակերպումը՝ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), որտեղ x_{1}-ը և x_{2}-ը ax^{2}+bx+c=0 քառակուսային հավասարման լուծումներն են։
x=\frac{-12±\sqrt{12^{2}}}{2\left(-2\right)}
ax^{2}+bx+c=0 ձևի բոլոր հավասարությունները կարող են լուծվել քառակուսու բանաձևի միջոցով. \frac{-b±\sqrt{b^{2}-4ac}}{2a}: Քառակուսու բանաձևը երկու լուծում ունի, մեկը երբ ±-ը գումարում է, իսկ մյուսը, երբ հանում է:
x=\frac{-12±12}{2\left(-2\right)}
Հանեք 12^{2}-ի քառակուսի արմատը:
x=\frac{-12±12}{-4}
Բազմապատկեք 2 անգամ -2:
x=\frac{0}{-4}
Այժմ լուծել x=\frac{-12±12}{-4} հավասարումը, երբ ±-ը պլյուս է: Գումարեք -12 12-ին:
x=0
Բաժանեք 0-ը -4-ի վրա:
x=-\frac{24}{-4}
Այժմ լուծել x=\frac{-12±12}{-4} հավասարումը, երբ ±-ը մինուս է: Հանեք 12 -12-ից:
x=6
Բաժանեք -24-ը -4-ի վրա:
-2x^{2}+12x=-2x\left(x-6\right)
Ֆակտորացրեք բնօրինակ արտահայտությունը՝ օգտագործելով ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)։ Փոխարինեք 0-ը x_{1}-ի և 6-ը x_{2}-ի։
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}