Լուծել x-ի համար (complex solution)
x=\frac{1+\sqrt{623}i}{2}\approx 0.5+12.479983974i
x=\frac{-\sqrt{623}i+1}{2}\approx 0.5-12.479983974i
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
x^{2}-x+156=0
Փոխանակեք կողմերը, այնպես որ բոլոր փոփոխական անդամները լինեն ձախ կողմում:
x=\frac{-\left(-1\right)±\sqrt{1-4\times 156}}{2}
Այս հավասարումը ստանդարտ ձևով է՝ ax^{2}+bx+c=0: \frac{-b±\sqrt{b^{2}-4ac}}{2a} քառ. հավ. արմ. բանաձևում փոխարինեք 1-ը a-ով, -1-ը b-ով և 156-ը c-ով:
x=\frac{-\left(-1\right)±\sqrt{1-624}}{2}
Բազմապատկեք -4 անգամ 156:
x=\frac{-\left(-1\right)±\sqrt{-623}}{2}
Գումարեք 1 -624-ին:
x=\frac{-\left(-1\right)±\sqrt{623}i}{2}
Հանեք -623-ի քառակուսի արմատը:
x=\frac{1±\sqrt{623}i}{2}
-1 թվի հակադրությունը 1 է:
x=\frac{1+\sqrt{623}i}{2}
Այժմ լուծել x=\frac{1±\sqrt{623}i}{2} հավասարումը, երբ ±-ը պլյուս է: Գումարեք 1 i\sqrt{623}-ին:
x=\frac{-\sqrt{623}i+1}{2}
Այժմ լուծել x=\frac{1±\sqrt{623}i}{2} հավասարումը, երբ ±-ը մինուս է: Հանեք i\sqrt{623} 1-ից:
x=\frac{1+\sqrt{623}i}{2} x=\frac{-\sqrt{623}i+1}{2}
Հավասարումն այժմ լուծված է:
x^{2}-x+156=0
Փոխանակեք կողմերը, այնպես որ բոլոր փոփոխական անդամները լինեն ձախ կողմում:
x^{2}-x=-156
Հանեք 156 երկու կողմերից: Զրոյից հանելով ցանկացած թիվ ստացվում է նույն թվի բացասական արժեքը:
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-156+\left(-\frac{1}{2}\right)^{2}
Բաժանեք -1-ը՝ x անդամի գործակիցը 2-ի և ստացեք -\frac{1}{2}-ը: Ապա գումարեք -\frac{1}{2}-ի քառակուսին հավասարման երկու կողմերին: Այս քայլը հավասարման ձախ կողմը դարձնում է լրիվ քառակուսի:
x^{2}-x+\frac{1}{4}=-156+\frac{1}{4}
Բարձրացրեք քառակուսի -\frac{1}{2}-ը՝ բարձրացնելով քառակուսի կոտորակի և համարիչը, և հայտարարը:
x^{2}-x+\frac{1}{4}=-\frac{623}{4}
Գումարեք -156 \frac{1}{4}-ին:
\left(x-\frac{1}{2}\right)^{2}=-\frac{623}{4}
Գործոն x^{2}-x+\frac{1}{4}: Ընդհանուր առմամբ, երբ x^{2}+bx+c մաքուր քառակուսի թիվ է, այն միշտ կարելի է համարել \left(x+\frac{b}{2}\right)^{2} ամբողջ մաս։
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{623}{4}}
Բարձրացրեք քառակուսի արմատ հավասարման երկու կողմերը:
x-\frac{1}{2}=\frac{\sqrt{623}i}{2} x-\frac{1}{2}=-\frac{\sqrt{623}i}{2}
Պարզեցնել:
x=\frac{1+\sqrt{623}i}{2} x=\frac{-\sqrt{623}i+1}{2}
Գումարեք \frac{1}{2} հավասարման երկու կողմին:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}