Skip դեպի հիմնական բովանդակությունը
Բազմապատիկ
Tick mark Image
Գնահատել
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

a+b=2 ab=-3=-3
Դուրս բերեք արտահայտությունը խմբավորելով։ Նախ, արտահայտութունը պետք է գրվի այսպես՝ -x^{2}+ax+bx+3։ a-ը և b-ը գտնելու համար ստեղծեք լուծելու համակարգ։
a=3 b=-1
Քանի որ ab-ն բացասական է, a-ն և b-ն հակառակ նշաններն ունեն։ Քանի որ a+b-ն դրական է, դրական թիվը ավելի մեծ բացարձակ արժեք ունի, քան բացասականը։ Միակ նման զույգը համակարգի լուծումն է։
\left(-x^{2}+3x\right)+\left(-x+3\right)
Նորից գրեք -x^{2}+2x+3-ը \left(-x^{2}+3x\right)+\left(-x+3\right)-ի տեսքով:
-x\left(x-3\right)-\left(x-3\right)
Դուրս բերել -x-ը առաջին իսկ -1-ը՝ երկրորդ խմբում։
\left(x-3\right)\left(-x-1\right)
Ֆակտորացրեք x-3 սովորական անդամը՝ օգտագործելով բաժանիչ հատկություն:
-x^{2}+2x+3=0
Քառակուսի բազմանդամը կարող է բազմապատկիչների վերածվել՝ օգտագործելով հետևյալ փոխակերպումը՝ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), որտեղ x_{1}-ը և x_{2}-ը ax^{2}+bx+c=0 քառակուսային հավասարման լուծումներն են։
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
ax^{2}+bx+c=0 ձևի բոլոր հավասարությունները կարող են լուծվել քառակուսու բանաձևի միջոցով. \frac{-b±\sqrt{b^{2}-4ac}}{2a}: Քառակուսու բանաձևը երկու լուծում ունի, մեկը երբ ±-ը գումարում է, իսկ մյուսը, երբ հանում է:
x=\frac{-2±\sqrt{4-4\left(-1\right)\times 3}}{2\left(-1\right)}
2-ի քառակուսի:
x=\frac{-2±\sqrt{4+4\times 3}}{2\left(-1\right)}
Բազմապատկեք -4 անգամ -1:
x=\frac{-2±\sqrt{4+12}}{2\left(-1\right)}
Բազմապատկեք 4 անգամ 3:
x=\frac{-2±\sqrt{16}}{2\left(-1\right)}
Գումարեք 4 12-ին:
x=\frac{-2±4}{2\left(-1\right)}
Հանեք 16-ի քառակուսի արմատը:
x=\frac{-2±4}{-2}
Բազմապատկեք 2 անգամ -1:
x=\frac{2}{-2}
Այժմ լուծել x=\frac{-2±4}{-2} հավասարումը, երբ ±-ը պլյուս է: Գումարեք -2 4-ին:
x=-1
Բաժանեք 2-ը -2-ի վրա:
x=-\frac{6}{-2}
Այժմ լուծել x=\frac{-2±4}{-2} հավասարումը, երբ ±-ը մինուս է: Հանեք 4 -2-ից:
x=3
Բաժանեք -6-ը -2-ի վրա:
-x^{2}+2x+3=-\left(x-\left(-1\right)\right)\left(x-3\right)
Ֆակտորացրեք բնօրինակ արտահայտությունը՝ օգտագործելով ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)։ Փոխարինեք -1-ը x_{1}-ի և 3-ը x_{2}-ի։
-x^{2}+2x+3=-\left(x+1\right)\left(x-3\right)
Պարզեցրեք p-\left(-q\right) ձևի բոլոր արտահայտությունները p+q-ի: