Լուծել x-ի համար
x=1
x=7
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
\left(4-x\right)^{2}=9
Բազմապատկեք 4-x և 4-x-ով և ստացեք \left(4-x\right)^{2}:
16-8x+x^{2}=9
Նյուտոնի երկանդամի \left(a-b\right)^{2}=a^{2}-2ab+b^{2} միջոցով ընդարձակեք \left(4-x\right)^{2}:
16-8x+x^{2}-9=0
Հանեք 9 երկու կողմերից:
7-8x+x^{2}=0
Հանեք 9 16-ից և ստացեք 7:
x^{2}-8x+7=0
ax^{2}+bx+c=0 ձևի բոլոր հավասարությունները կարող են լուծվել քառակուսու բանաձևի միջոցով. \frac{-b±\sqrt{b^{2}-4ac}}{2a}: Քառակուսու բանաձևը երկու լուծում ունի, մեկը երբ ±-ը գումարում է, իսկ մյուսը, երբ հանում է:
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 7}}{2}
Այս հավասարումը ստանդարտ ձևով է՝ ax^{2}+bx+c=0: \frac{-b±\sqrt{b^{2}-4ac}}{2a} քառ. հավ. արմ. բանաձևում փոխարինեք 1-ը a-ով, -8-ը b-ով և 7-ը c-ով:
x=\frac{-\left(-8\right)±\sqrt{64-4\times 7}}{2}
-8-ի քառակուսի:
x=\frac{-\left(-8\right)±\sqrt{64-28}}{2}
Բազմապատկեք -4 անգամ 7:
x=\frac{-\left(-8\right)±\sqrt{36}}{2}
Գումարեք 64 -28-ին:
x=\frac{-\left(-8\right)±6}{2}
Հանեք 36-ի քառակուսի արմատը:
x=\frac{8±6}{2}
-8 թվի հակադրությունը 8 է:
x=\frac{14}{2}
Այժմ լուծել x=\frac{8±6}{2} հավասարումը, երբ ±-ը պլյուս է: Գումարեք 8 6-ին:
x=7
Բաժանեք 14-ը 2-ի վրա:
x=\frac{2}{2}
Այժմ լուծել x=\frac{8±6}{2} հավասարումը, երբ ±-ը մինուս է: Հանեք 6 8-ից:
x=1
Բաժանեք 2-ը 2-ի վրա:
x=7 x=1
Հավասարումն այժմ լուծված է:
\left(4-x\right)^{2}=9
Բազմապատկեք 4-x և 4-x-ով և ստացեք \left(4-x\right)^{2}:
16-8x+x^{2}=9
Նյուտոնի երկանդամի \left(a-b\right)^{2}=a^{2}-2ab+b^{2} միջոցով ընդարձակեք \left(4-x\right)^{2}:
-8x+x^{2}=9-16
Հանեք 16 երկու կողմերից:
-8x+x^{2}=-7
Հանեք 16 9-ից և ստացեք -7:
x^{2}-8x=-7
Սրա նման քառակուսի հավասարումները կարելի է լուծել՝ բարձրացնելով քառակուսի: Քառակուսի բարձրացնելու համար նախ հավասարումը պետք է լինի x^{2}+bx=c ձևով:
x^{2}-8x+\left(-4\right)^{2}=-7+\left(-4\right)^{2}
Բաժանեք -8-ը՝ x անդամի գործակիցը 2-ի և ստացեք -4-ը: Ապա գումարեք -4-ի քառակուսին հավասարման երկու կողմերին: Այս քայլը հավասարման ձախ կողմը դարձնում է լրիվ քառակուսի:
x^{2}-8x+16=-7+16
-4-ի քառակուսի:
x^{2}-8x+16=9
Գումարեք -7 16-ին:
\left(x-4\right)^{2}=9
Գործոն x^{2}-8x+16: Ընդհանուր առմամբ, երբ x^{2}+bx+c մաքուր քառակուսի թիվ է, այն միշտ կարելի է համարել \left(x+\frac{b}{2}\right)^{2} ամբողջ մաս։
\sqrt{\left(x-4\right)^{2}}=\sqrt{9}
Բարձրացրեք քառակուսի արմատ հավասարման երկու կողմերը:
x-4=3 x-4=-3
Պարզեցնել:
x=7 x=1
Գումարեք 4 հավասարման երկու կողմին:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}