Skip դեպի հիմնական բովանդակությունը
Լուծել x-ի համար
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

\left(x-3\right)^{2}=0
Անհավասարումը լուծելու համար բազմապատկիչների վերածեք ձախ կողմը: Քառակուսի բազմանդամը կարող է բազմապատկիչների վերածվել՝ օգտագործելով հետևյալ փոխակերպումը՝ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), որտեղ x_{1}-ը և x_{2}-ը ax^{2}+bx+c=0 քառակուսային հավասարման լուծումներն են։
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 1\times 7}}{2}
Հետևյալ ձևի բոլոր հավասարումները՝ ax^{2}+bx+c=0 կարող են լուծվել քառ. հավ. արմ. բանաձևի միջոցով՝ \frac{-b±\sqrt{b^{2}-4ac}}{2a}: Քառ. հավ. արմ. բանաձևում փոխարինեք 1-ը a-ով, -6-ը b-ով և 7-ը c-ով:
x=\frac{6±2\sqrt{2}}{2}
Կատարեք հաշվարկումներ:
x=\sqrt{2}+3 x=3-\sqrt{2}
Լուծեք x=\frac{6±2\sqrt{2}}{2} հավասարումը, երբ ±-ը գումարած է և երբ ±-ը հանած է:
\left(x-\left(\sqrt{2}+3\right)\right)\left(x-\left(3-\sqrt{2}\right)\right)<0
Նորից գրեք անհավասարումը՝ օգտագործելով ստացված լուծումները:
x-\left(\sqrt{2}+3\right)>0 x-\left(3-\sqrt{2}\right)<0
Որպեսզի արտադրյալը բացասական լինի x-\left(\sqrt{2}+3\right)-ը և x-\left(3-\sqrt{2}\right)-ը պետք է հակադիր նշաններ ունենան: Դիտարկեք այն դեպքը, երբ x-\left(\sqrt{2}+3\right)-ը դրական է, իսկ x-\left(3-\sqrt{2}\right)-ը բացասական է:
x\in \emptyset
Սա սխալ է ցանկացած x-ի դեպքում:
x-\left(3-\sqrt{2}\right)>0 x-\left(\sqrt{2}+3\right)<0
Դիտարկեք այն դեպքը, երբ x-\left(3-\sqrt{2}\right)-ը դրական է, իսկ x-\left(\sqrt{2}+3\right)-ը բացասական է:
x\in \left(3-\sqrt{2},\sqrt{2}+3\right)
Երկու անհավասարումները բավարարող լուծումը x\in \left(3-\sqrt{2},\sqrt{2}+3\right) է:
x\in \left(3-\sqrt{2},\sqrt{2}+3\right)
Վերջնական լուծումը ստացված լուծումները միավորումն է: