Skip դեպի հիմնական բովանդակությունը
Բազմապատիկ
Tick mark Image
Գնահատել
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

a+b=12 ab=1\times 36=36
Դուրս բերեք արտահայտությունը խմբավորելով։ Նախ, արտահայտութունը պետք է գրվի այսպես՝ x^{2}+ax+bx+36։ a-ը և b-ը գտնելու համար ստեղծեք լուծելու համակարգ։
1,36 2,18 3,12 4,9 6,6
Քանի որ ab-ն դրական է, a-ն և b-ն նույն նշանն ունեն։ Քանի որ a+b-ն դրական է, a-ն և b-ն երկուսն էլ դրական են։ Թվարկեք բոլոր այն ամբողջ թվով զույգերը, որոնց արդյունքը 36 է։
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
Հաշվարկեք յուրաքանչյուր զույգի գումարը։
a=6 b=6
Լուծումը այն զույգն է, որը տալիս է 12 գումար։
\left(x^{2}+6x\right)+\left(6x+36\right)
Նորից գրեք x^{2}+12x+36-ը \left(x^{2}+6x\right)+\left(6x+36\right)-ի տեսքով:
x\left(x+6\right)+6\left(x+6\right)
Դուրս բերել x-ը առաջին իսկ 6-ը՝ երկրորդ խմբում։
\left(x+6\right)\left(x+6\right)
Ֆակտորացրեք x+6 սովորական անդամը՝ օգտագործելով բաժանիչ հատկություն:
\left(x+6\right)^{2}
Վերագրեք այն որպես երկանդամ քառակուսի:
factor(x^{2}+12x+36)
Այս եռանդամն ունի եռանդամ քառակուսու ձև՝ բազմապատկված ընդհանուր բազմապատիկով: Եռանդամ քառակուսիների բազմապատիկը կարելի է գտնել՝ գտնելով առաջին կամ վերջին անդամների քառակուսի արմատները:
\sqrt{36}=6
Գտեք վերջին անդամի քառակուսի արմատը՝ 36:
\left(x+6\right)^{2}
Եռանդամ քառակուսին երկանդամի քառակուսին է, որը առաջին կամ վերջին անդամների քառակուսի արմատների գումարը կամ տարբերությունն է, որը սահմանված է եռանդամ քառակուսու մեջտեղի անդամի նշանով:
x^{2}+12x+36=0
Քառակուսի բազմանդամը կարող է բազմապատկիչների վերածվել՝ օգտագործելով հետևյալ փոխակերպումը՝ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), որտեղ x_{1}-ը և x_{2}-ը ax^{2}+bx+c=0 քառակուսային հավասարման լուծումներն են։
x=\frac{-12±\sqrt{12^{2}-4\times 36}}{2}
ax^{2}+bx+c=0 ձևի բոլոր հավասարությունները կարող են լուծվել քառակուսու բանաձևի միջոցով. \frac{-b±\sqrt{b^{2}-4ac}}{2a}: Քառակուսու բանաձևը երկու լուծում ունի, մեկը երբ ±-ը գումարում է, իսկ մյուսը, երբ հանում է:
x=\frac{-12±\sqrt{144-4\times 36}}{2}
12-ի քառակուսի:
x=\frac{-12±\sqrt{144-144}}{2}
Բազմապատկեք -4 անգամ 36:
x=\frac{-12±\sqrt{0}}{2}
Գումարեք 144 -144-ին:
x=\frac{-12±0}{2}
Հանեք 0-ի քառակուսի արմատը:
x^{2}+12x+36=\left(x-\left(-6\right)\right)\left(x-\left(-6\right)\right)
Ֆակտորացրեք բնօրինակ արտահայտությունը՝ օգտագործելով ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)։ Փոխարինեք -6-ը x_{1}-ի և -6-ը x_{2}-ի։
x^{2}+12x+36=\left(x+6\right)\left(x+6\right)
Պարզեցրեք p-\left(-q\right) ձևի բոլոր արտահայտությունները p+q-ի: