Skip դեպի հիմնական բովանդակությունը
Լուծել x-ի համար
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

2x^{2}+5x-3=9
Օգտագործեք բաժանիչ հատկությունը՝ x+3-ը 2x-1-ով բազմապատկելու և նման պայմանները համակցելու համար:
2x^{2}+5x-3-9=0
Հանեք 9 երկու կողմերից:
2x^{2}+5x-12=0
Հանեք 9 -3-ից և ստացեք -12:
x=\frac{-5±\sqrt{5^{2}-4\times 2\left(-12\right)}}{2\times 2}
Այս հավասարումը ստանդարտ ձևով է՝ ax^{2}+bx+c=0: \frac{-b±\sqrt{b^{2}-4ac}}{2a} քառ. հավ. արմ. բանաձևում փոխարինեք 2-ը a-ով, 5-ը b-ով և -12-ը c-ով:
x=\frac{-5±\sqrt{25-4\times 2\left(-12\right)}}{2\times 2}
5-ի քառակուսի:
x=\frac{-5±\sqrt{25-8\left(-12\right)}}{2\times 2}
Բազմապատկեք -4 անգամ 2:
x=\frac{-5±\sqrt{25+96}}{2\times 2}
Բազմապատկեք -8 անգամ -12:
x=\frac{-5±\sqrt{121}}{2\times 2}
Գումարեք 25 96-ին:
x=\frac{-5±11}{2\times 2}
Հանեք 121-ի քառակուսի արմատը:
x=\frac{-5±11}{4}
Բազմապատկեք 2 անգամ 2:
x=\frac{6}{4}
Այժմ լուծել x=\frac{-5±11}{4} հավասարումը, երբ ±-ը պլյուս է: Գումարեք -5 11-ին:
x=\frac{3}{2}
Նվազեցնել \frac{6}{4} կոտորակը մինչև ամենափոքր արժեքների՝ արտահանելով և չեղարկելով 2-ը:
x=-\frac{16}{4}
Այժմ լուծել x=\frac{-5±11}{4} հավասարումը, երբ ±-ը մինուս է: Հանեք 11 -5-ից:
x=-4
Բաժանեք -16-ը 4-ի վրա:
x=\frac{3}{2} x=-4
Հավասարումն այժմ լուծված է:
2x^{2}+5x-3=9
Օգտագործեք բաժանիչ հատկությունը՝ x+3-ը 2x-1-ով բազմապատկելու և նման պայմանները համակցելու համար:
2x^{2}+5x=9+3
Հավելել 3-ը երկու կողմերում:
2x^{2}+5x=12
Գումարեք 9 և 3 և ստացեք 12:
\frac{2x^{2}+5x}{2}=\frac{12}{2}
Բաժանեք երկու կողմերը 2-ի:
x^{2}+\frac{5}{2}x=\frac{12}{2}
Բաժանելով 2-ի՝ հետարկվում է 2-ով բազմապատկումը:
x^{2}+\frac{5}{2}x=6
Բաժանեք 12-ը 2-ի վրա:
x^{2}+\frac{5}{2}x+\left(\frac{5}{4}\right)^{2}=6+\left(\frac{5}{4}\right)^{2}
Բաժանեք \frac{5}{2}-ը՝ x անդամի գործակիցը 2-ի և ստացեք \frac{5}{4}-ը: Ապա գումարեք \frac{5}{4}-ի քառակուսին հավասարման երկու կողմերին: Այս քայլը հավասարման ձախ կողմը դարձնում է լրիվ քառակուսի:
x^{2}+\frac{5}{2}x+\frac{25}{16}=6+\frac{25}{16}
Բարձրացրեք քառակուսի \frac{5}{4}-ը՝ բարձրացնելով քառակուսի կոտորակի և համարիչը, և հայտարարը:
x^{2}+\frac{5}{2}x+\frac{25}{16}=\frac{121}{16}
Գումարեք 6 \frac{25}{16}-ին:
\left(x+\frac{5}{4}\right)^{2}=\frac{121}{16}
Գործոն x^{2}+\frac{5}{2}x+\frac{25}{16}: Ընդհանուր առմամբ, երբ x^{2}+bx+c մաքուր քառակուսի թիվ է, այն միշտ կարելի է համարել \left(x+\frac{b}{2}\right)^{2} ամբողջ մաս։
\sqrt{\left(x+\frac{5}{4}\right)^{2}}=\sqrt{\frac{121}{16}}
Բարձրացրեք քառակուսի արմատ հավասարման երկու կողմերը:
x+\frac{5}{4}=\frac{11}{4} x+\frac{5}{4}=-\frac{11}{4}
Պարզեցնել:
x=\frac{3}{2} x=-4
Հանեք \frac{5}{4} հավասարման երկու կողմից: