Skip դեպի հիմնական բովանդակությունը
Գնահատել
Tick mark Image
Տարբերակել վերագրած a-ը
Tick mark Image

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

64^{-\frac{1}{6}}\left(a^{24}\right)^{-\frac{1}{6}}
Ընդարձակեք \left(64a^{24}\right)^{-\frac{1}{6}}:
64^{-\frac{1}{6}}a^{-4}
Թվի աստիճանը այլ աստիճան բարձրացնելու համար բազմապատկեք ցուցիչները: Բազմապատկեք 24-ը և -\frac{1}{6}-ը և ստացեք -4-ը:
\frac{1}{2}a^{-4}
Հաշվեք -\frac{1}{6}-ի 64 աստիճանը և ստացեք \frac{1}{2}:
-\frac{1}{6}\times \left(64a^{24}\right)^{-\frac{1}{6}-1}\frac{\mathrm{d}}{\mathrm{d}a}(64a^{24})
Եթե F-ը կազմված է երկու ածանցելի ֆունկցիաներից՝ f\left(u\right)-ից և u=g\left(x\right)-ից, այսինքն՝ եթե F\left(x\right)=f\left(g\left(x\right)\right), ապա F-ի ածանցյալը f-ի ածանցյալն է u-ի հարաբերությամբ, անգամ g-ի ածանցյալը x-ի հարաբերությամբ, այսինքն՝ \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right):
-\frac{1}{6}\times \left(64a^{24}\right)^{-\frac{7}{6}}\times 24\times 64a^{24-1}
Բազմանդամի ածանցյալը իր անդամների ածանցյալների գումարն է: Ցանկացած հաստատուն անդամի ածանցյալը 0 է: ax^{n}-ի ածանցյալը nax^{n-1} է:
-256a^{23}\times \left(64a^{24}\right)^{-\frac{7}{6}}
Պարզեցնել: