Լուծել x-ի համար
x=-1
x=1
Լուծել x-ի համար (complex solution)
x=i
x=-i
x=-1
x=1
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
x^{6}+1-x^{4}=x^{2}
Հանեք x^{4} երկու կողմերից:
x^{6}+1-x^{4}-x^{2}=0
Հանեք x^{2} երկու կողմերից:
x^{6}-x^{4}-x^{2}+1=0
Վերադասավորեք հավասարումը՝ բերելով այն ստանդարտ ձևի: Դասավորեք անդամները բարձրից ցածր:
±1
Ըստ Ռացիոնալ արմատի թեորեմի՝ բազմանդամի բոլոր ռացիոնալ արմատները \frac{p}{q} տեսքով են, որտեղ p բաժանում է 1 հաստատուն անդամը, իսկ q բաժանում է 1 առաջատար գործակիցը: Նշել բոլոր թեկնածուները \frac{p}{q}:
x=1
Գտեք մեկ արմատ՝ փորձելով բոլոր ամբողջ թվով արժեքները, սկսած ամենափոքրից մինչև բացարձակ արժեք: Եթե ոչ մի ամբողջ թվով արմատ չգտնվի, փորձեք կոտորակները:
x^{5}+x^{4}-x-1=0
Ըստ Բազմապատիկի թեորեմի՝ x-k-ը բազմանդամի բազմապատիկն է յուրաքանչյուր k արմատի համար: Բաժանեք x^{6}-x^{4}-x^{2}+1 x-1-ի և ստացեք x^{5}+x^{4}-x-1: Լուծեք հավասարումը, որտեղ արդյունքը հավասարվում է 0:
±1
Ըստ Ռացիոնալ արմատի թեորեմի՝ բազմանդամի բոլոր ռացիոնալ արմատները \frac{p}{q} տեսքով են, որտեղ p բաժանում է -1 հաստատուն անդամը, իսկ q բաժանում է 1 առաջատար գործակիցը: Նշել բոլոր թեկնածուները \frac{p}{q}:
x=1
Գտեք մեկ արմատ՝ փորձելով բոլոր ամբողջ թվով արժեքները, սկսած ամենափոքրից մինչև բացարձակ արժեք: Եթե ոչ մի ամբողջ թվով արմատ չգտնվի, փորձեք կոտորակները:
x^{4}+2x^{3}+2x^{2}+2x+1=0
Ըստ Բազմապատիկի թեորեմի՝ x-k-ը բազմանդամի բազմապատիկն է յուրաքանչյուր k արմատի համար: Բաժանեք x^{5}+x^{4}-x-1 x-1-ի և ստացեք x^{4}+2x^{3}+2x^{2}+2x+1: Լուծեք հավասարումը, որտեղ արդյունքը հավասարվում է 0:
±1
Ըստ Ռացիոնալ արմատի թեորեմի՝ բազմանդամի բոլոր ռացիոնալ արմատները \frac{p}{q} տեսքով են, որտեղ p բաժանում է 1 հաստատուն անդամը, իսկ q բաժանում է 1 առաջատար գործակիցը: Նշել բոլոր թեկնածուները \frac{p}{q}:
x=-1
Գտեք մեկ արմատ՝ փորձելով բոլոր ամբողջ թվով արժեքները, սկսած ամենափոքրից մինչև բացարձակ արժեք: Եթե ոչ մի ամբողջ թվով արմատ չգտնվի, փորձեք կոտորակները:
x^{3}+x^{2}+x+1=0
Ըստ Բազմապատիկի թեորեմի՝ x-k-ը բազմանդամի բազմապատիկն է յուրաքանչյուր k արմատի համար: Բաժանեք x^{4}+2x^{3}+2x^{2}+2x+1 x+1-ի և ստացեք x^{3}+x^{2}+x+1: Լուծեք հավասարումը, որտեղ արդյունքը հավասարվում է 0:
±1
Ըստ Ռացիոնալ արմատի թեորեմի՝ բազմանդամի բոլոր ռացիոնալ արմատները \frac{p}{q} տեսքով են, որտեղ p բաժանում է 1 հաստատուն անդամը, իսկ q բաժանում է 1 առաջատար գործակիցը: Նշել բոլոր թեկնածուները \frac{p}{q}:
x=-1
Գտեք մեկ արմատ՝ փորձելով բոլոր ամբողջ թվով արժեքները, սկսած ամենափոքրից մինչև բացարձակ արժեք: Եթե ոչ մի ամբողջ թվով արմատ չգտնվի, փորձեք կոտորակները:
x^{2}+1=0
Ըստ Բազմապատիկի թեորեմի՝ x-k-ը բազմանդամի բազմապատիկն է յուրաքանչյուր k արմատի համար: Բաժանեք x^{3}+x^{2}+x+1 x+1-ի և ստացեք x^{2}+1: Լուծեք հավասարումը, որտեղ արդյունքը հավասարվում է 0:
x=\frac{0±\sqrt{0^{2}-4\times 1\times 1}}{2}
Հետևյալ ձևի բոլոր հավասարումները՝ ax^{2}+bx+c=0 կարող են լուծվել քառ. հավ. արմ. բանաձևի միջոցով՝ \frac{-b±\sqrt{b^{2}-4ac}}{2a}: Քառ. հավ. արմ. բանաձևում փոխարինեք 1-ը a-ով, 0-ը b-ով և 1-ը c-ով:
x=\frac{0±\sqrt{-4}}{2}
Կատարեք հաշվարկումներ:
x\in \emptyset
Քանի որ բացասական թվի քառակուսի արմատը նշված չէ իրական դաշտում, ուրեմն լուծումներ չկան:
x=1 x=-1
Թվարկեք բոլոր գտնված լուծումները:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}