Skip դեպի հիմնական բովանդակությունը
Լուծել x-ի համար (complex solution)
Tick mark Image
Լուծել x-ի համար
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

x^{3}+3x=4
Հավելել 3x-ը երկու կողմերում:
x^{3}+3x-4=0
Հանեք 4 երկու կողմերից:
±4,±2,±1
Ըստ Ռացիոնալ արմատի թեորեմի՝ բազմանդամի բոլոր ռացիոնալ արմատները \frac{p}{q} տեսքով են, որտեղ p բաժանում է -4 հաստատուն անդամը, իսկ q բաժանում է 1 առաջատար գործակիցը: Նշել բոլոր թեկնածուները \frac{p}{q}:
x=1
Գտեք մեկ արմատ՝ փորձելով բոլոր ամբողջ թվով արժեքները, սկսած ամենափոքրից մինչև բացարձակ արժեք: Եթե ոչ մի ամբողջ թվով արմատ չգտնվի, փորձեք կոտորակները:
x^{2}+x+4=0
Ըստ Բազմապատիկի թեորեմի՝ x-k-ը բազմանդամի բազմապատիկն է յուրաքանչյուր k արմատի համար: Բաժանեք x^{3}+3x-4 x-1-ի և ստացեք x^{2}+x+4: Լուծեք հավասարումը, որտեղ արդյունքը հավասարվում է 0:
x=\frac{-1±\sqrt{1^{2}-4\times 1\times 4}}{2}
Հետևյալ ձևի բոլոր հավասարումները՝ ax^{2}+bx+c=0 կարող են լուծվել քառ. հավ. արմ. բանաձևի միջոցով՝ \frac{-b±\sqrt{b^{2}-4ac}}{2a}: Քառ. հավ. արմ. բանաձևում փոխարինեք 1-ը a-ով, 1-ը b-ով և 4-ը c-ով:
x=\frac{-1±\sqrt{-15}}{2}
Կատարեք հաշվարկումներ:
x=\frac{-\sqrt{15}i-1}{2} x=\frac{-1+\sqrt{15}i}{2}
Լուծեք x^{2}+x+4=0 հավասարումը, երբ ±-ը գումարած է և երբ ±-ը հանած է:
x=1 x=\frac{-\sqrt{15}i-1}{2} x=\frac{-1+\sqrt{15}i}{2}
Թվարկեք բոլոր գտնված լուծումները:
x^{3}+3x=4
Հավելել 3x-ը երկու կողմերում:
x^{3}+3x-4=0
Հանեք 4 երկու կողմերից:
±4,±2,±1
Ըստ Ռացիոնալ արմատի թեորեմի՝ բազմանդամի բոլոր ռացիոնալ արմատները \frac{p}{q} տեսքով են, որտեղ p բաժանում է -4 հաստատուն անդամը, իսկ q բաժանում է 1 առաջատար գործակիցը: Նշել բոլոր թեկնածուները \frac{p}{q}:
x=1
Գտեք մեկ արմատ՝ փորձելով բոլոր ամբողջ թվով արժեքները, սկսած ամենափոքրից մինչև բացարձակ արժեք: Եթե ոչ մի ամբողջ թվով արմատ չգտնվի, փորձեք կոտորակները:
x^{2}+x+4=0
Ըստ Բազմապատիկի թեորեմի՝ x-k-ը բազմանդամի բազմապատիկն է յուրաքանչյուր k արմատի համար: Բաժանեք x^{3}+3x-4 x-1-ի և ստացեք x^{2}+x+4: Լուծեք հավասարումը, որտեղ արդյունքը հավասարվում է 0:
x=\frac{-1±\sqrt{1^{2}-4\times 1\times 4}}{2}
Հետևյալ ձևի բոլոր հավասարումները՝ ax^{2}+bx+c=0 կարող են լուծվել քառ. հավ. արմ. բանաձևի միջոցով՝ \frac{-b±\sqrt{b^{2}-4ac}}{2a}: Քառ. հավ. արմ. բանաձևում փոխարինեք 1-ը a-ով, 1-ը b-ով և 4-ը c-ով:
x=\frac{-1±\sqrt{-15}}{2}
Կատարեք հաշվարկումներ:
x\in \emptyset
Քանի որ բացասական թվի քառակուսի արմատը նշված չէ իրական դաշտում, ուրեմն լուծումներ չկան:
x=1
Թվարկեք բոլոր գտնված լուծումները: