Skip դեպի հիմնական բովանդակությունը
Լուծել x-ի համար
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

2x^{2}-x-3=0
Բազմապատկեք հավասարման երկու կողմերը 2-ով:
a+b=-1 ab=2\left(-3\right)=-6
Հավասարումը լուծելու համար դուրս բերեք ձախ հատվածը՝ խմբավորման միջոցով։ Նախ, ձախ հատվածը պետք է գրվի այսպես՝ 2x^{2}+ax+bx-3։ a-ը և b-ը գտնելու համար ստեղծեք լուծելու համակարգ։
1,-6 2,-3
Քանի որ ab-ն բացասական է, a-ն և b-ն հակառակ նշաններն ունեն։ Քանի որ a+b-ն բացասական է, բացասական թիվը ավելի մեծ բացարձակ արժեք ունի, քան դրականը։ Թվարկեք բոլոր այն ամբողջ թվով զույգերը, որոնց արդյունքը -6 է։
1-6=-5 2-3=-1
Հաշվարկեք յուրաքանչյուր զույգի գումարը։
a=-3 b=2
Լուծումը այն զույգն է, որը տալիս է -1 գումար։
\left(2x^{2}-3x\right)+\left(2x-3\right)
Նորից գրեք 2x^{2}-x-3-ը \left(2x^{2}-3x\right)+\left(2x-3\right)-ի տեսքով:
x\left(2x-3\right)+2x-3
Ֆակտորացրեք x-ը 2x^{2}-3x-ում։
\left(2x-3\right)\left(x+1\right)
Ֆակտորացրեք 2x-3 սովորական անդամը՝ օգտագործելով բաժանիչ հատկություն:
x=\frac{3}{2} x=-1
Հավասարման լուծումները գտնելու համար լուծեք 2x-3=0-ն և x+1=0-ն։
2x^{2}-x-3=0
Բազմապատկեք հավասարման երկու կողմերը 2-ով:
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-3\right)}}{2\times 2}
Այս հավասարումը ստանդարտ ձևով է՝ ax^{2}+bx+c=0: \frac{-b±\sqrt{b^{2}-4ac}}{2a} քառ. հավ. արմ. բանաձևում փոխարինեք 2-ը a-ով, -1-ը b-ով և -3-ը c-ով:
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-3\right)}}{2\times 2}
Բազմապատկեք -4 անգամ 2:
x=\frac{-\left(-1\right)±\sqrt{1+24}}{2\times 2}
Բազմապատկեք -8 անգամ -3:
x=\frac{-\left(-1\right)±\sqrt{25}}{2\times 2}
Գումարեք 1 24-ին:
x=\frac{-\left(-1\right)±5}{2\times 2}
Հանեք 25-ի քառակուսի արմատը:
x=\frac{1±5}{2\times 2}
-1 թվի հակադրությունը 1 է:
x=\frac{1±5}{4}
Բազմապատկեք 2 անգամ 2:
x=\frac{6}{4}
Այժմ լուծել x=\frac{1±5}{4} հավասարումը, երբ ±-ը պլյուս է: Գումարեք 1 5-ին:
x=\frac{3}{2}
Նվազեցնել \frac{6}{4} կոտորակը մինչև ամենափոքր արժեքների՝ արտահանելով և չեղարկելով 2-ը:
x=-\frac{4}{4}
Այժմ լուծել x=\frac{1±5}{4} հավասարումը, երբ ±-ը մինուս է: Հանեք 5 1-ից:
x=-1
Բաժանեք -4-ը 4-ի վրա:
x=\frac{3}{2} x=-1
Հավասարումն այժմ լուծված է:
2x^{2}-x-3=0
Բազմապատկեք հավասարման երկու կողմերը 2-ով:
2x^{2}-x=3
Հավելել 3-ը երկու կողմերում: Ցանկացած թվին գումարելով զրո ստացվում է նույն թիվը:
\frac{2x^{2}-x}{2}=\frac{3}{2}
Բաժանեք երկու կողմերը 2-ի:
x^{2}-\frac{1}{2}x=\frac{3}{2}
Բաժանելով 2-ի՝ հետարկվում է 2-ով բազմապատկումը:
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{3}{2}+\left(-\frac{1}{4}\right)^{2}
Բաժանեք -\frac{1}{2}-ը՝ x անդամի գործակիցը 2-ի և ստացեք -\frac{1}{4}-ը: Ապա գումարեք -\frac{1}{4}-ի քառակուսին հավասարման երկու կողմերին: Այս քայլը հավասարման ձախ կողմը դարձնում է լրիվ քառակուսի:
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{3}{2}+\frac{1}{16}
Բարձրացրեք քառակուսի -\frac{1}{4}-ը՝ բարձրացնելով քառակուսի կոտորակի և համարիչը, և հայտարարը:
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{25}{16}
Գումարեք \frac{3}{2} \frac{1}{16}-ին՝ գտնելով ընդհանուր հայտարարը և գումարելով համարիչները: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը մինչև ամենացածր անդամը:
\left(x-\frac{1}{4}\right)^{2}=\frac{25}{16}
x^{2}-\frac{1}{2}x+\frac{1}{16} բազմապատիկ: Սովորաբար, երբ x^{2}+bx+c-ը լրիվ քառակուսի է, նրա բազմապատիկը միշտ կարելի է ստանալ հետևյալ ձևով՝ \left(x+\frac{b}{2}\right)^{2}:
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
Բարձրացրեք քառակուսի արմատ հավասարման երկու կողմերը:
x-\frac{1}{4}=\frac{5}{4} x-\frac{1}{4}=-\frac{5}{4}
Պարզեցնել:
x=\frac{3}{2} x=-1
Գումարեք \frac{1}{4} հավասարման երկու կողմին: