Skip դեպի հիմնական բովանդակությունը
Լուծել x-ի համար
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

2x^{2}+1x+2x=5
Համակցեք x^{2} և x^{2} և ստացեք 2x^{2}:
2x^{2}+3x=5
Համակցեք 1x և 2x և ստացեք 3x:
2x^{2}+3x-5=0
Հանեք 5 երկու կողմերից:
a+b=3 ab=2\left(-5\right)=-10
Հավասարումը լուծելու համար դուրս բերեք ձախ հատվածը՝ խմբավորման միջոցով։ Նախ, ձախ հատվածը պետք է գրվի այսպես՝ 2x^{2}+ax+bx-5։ a-ը և b-ը գտնելու համար ստեղծեք լուծելու համակարգ։
-1,10 -2,5
Քանի որ ab-ն բացասական է, a-ն և b-ն հակառակ նշաններն ունեն։ Քանի որ a+b-ն դրական է, դրական թիվը ավելի մեծ բացարձակ արժեք ունի, քան բացասականը։ Թվարկեք բոլոր այն ամբողջ թվով զույգերը, որոնց արդյունքը -10 է։
-1+10=9 -2+5=3
Հաշվարկեք յուրաքանչյուր զույգի գումարը։
a=-2 b=5
Լուծումը այն զույգն է, որը տալիս է 3 գումար։
\left(2x^{2}-2x\right)+\left(5x-5\right)
Նորից գրեք 2x^{2}+3x-5-ը \left(2x^{2}-2x\right)+\left(5x-5\right)-ի տեսքով:
2x\left(x-1\right)+5\left(x-1\right)
Դուրս բերել 2x-ը առաջին իսկ 5-ը՝ երկրորդ խմբում։
\left(x-1\right)\left(2x+5\right)
Ֆակտորացրեք x-1 սովորական անդամը՝ օգտագործելով բաժանիչ հատկություն:
x=1 x=-\frac{5}{2}
Հավասարման լուծումները գտնելու համար լուծեք x-1=0-ն և 2x+5=0-ն։
2x^{2}+1x+2x=5
Համակցեք x^{2} և x^{2} և ստացեք 2x^{2}:
2x^{2}+3x=5
Համակցեք 1x և 2x և ստացեք 3x:
2x^{2}+3x-5=0
Հանեք 5 երկու կողմերից:
x=\frac{-3±\sqrt{3^{2}-4\times 2\left(-5\right)}}{2\times 2}
Այս հավասարումը ստանդարտ ձևով է՝ ax^{2}+bx+c=0: \frac{-b±\sqrt{b^{2}-4ac}}{2a} քառ. հավ. արմ. բանաձևում փոխարինեք 2-ը a-ով, 3-ը b-ով և -5-ը c-ով:
x=\frac{-3±\sqrt{9-4\times 2\left(-5\right)}}{2\times 2}
3-ի քառակուսի:
x=\frac{-3±\sqrt{9-8\left(-5\right)}}{2\times 2}
Բազմապատկեք -4 անգամ 2:
x=\frac{-3±\sqrt{9+40}}{2\times 2}
Բազմապատկեք -8 անգամ -5:
x=\frac{-3±\sqrt{49}}{2\times 2}
Գումարեք 9 40-ին:
x=\frac{-3±7}{2\times 2}
Հանեք 49-ի քառակուսի արմատը:
x=\frac{-3±7}{4}
Բազմապատկեք 2 անգամ 2:
x=\frac{4}{4}
Այժմ լուծել x=\frac{-3±7}{4} հավասարումը, երբ ±-ը պլյուս է: Գումարեք -3 7-ին:
x=1
Բաժանեք 4-ը 4-ի վրա:
x=-\frac{10}{4}
Այժմ լուծել x=\frac{-3±7}{4} հավասարումը, երբ ±-ը մինուս է: Հանեք 7 -3-ից:
x=-\frac{5}{2}
Նվազեցնել \frac{-10}{4} կոտորակը մինչև ամենափոքր արժեքների՝ արտահանելով և չեղարկելով 2-ը:
x=1 x=-\frac{5}{2}
Հավասարումն այժմ լուծված է:
2x^{2}+1x+2x=5
Համակցեք x^{2} և x^{2} և ստացեք 2x^{2}:
2x^{2}+3x=5
Համակցեք 1x և 2x և ստացեք 3x:
\frac{2x^{2}+3x}{2}=\frac{5}{2}
Բաժանեք երկու կողմերը 2-ի:
x^{2}+\frac{3}{2}x=\frac{5}{2}
Բաժանելով 2-ի՝ հետարկվում է 2-ով բազմապատկումը:
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=\frac{5}{2}+\left(\frac{3}{4}\right)^{2}
Բաժանեք \frac{3}{2}-ը՝ x անդամի գործակիցը 2-ի և ստացեք \frac{3}{4}-ը: Ապա գումարեք \frac{3}{4}-ի քառակուսին հավասարման երկու կողմերին: Այս քայլը հավասարման ձախ կողմը դարձնում է լրիվ քառակուսի:
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{5}{2}+\frac{9}{16}
Բարձրացրեք քառակուսի \frac{3}{4}-ը՝ բարձրացնելով քառակուսի կոտորակի և համարիչը, և հայտարարը:
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{49}{16}
Գումարեք \frac{5}{2} \frac{9}{16}-ին՝ գտնելով ընդհանուր հայտարարը և գումարելով համարիչները: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը մինչև ամենացածր անդամը:
\left(x+\frac{3}{4}\right)^{2}=\frac{49}{16}
Գործոն x^{2}+\frac{3}{2}x+\frac{9}{16}: Ընդհանուր առմամբ, երբ x^{2}+bx+c մաքուր քառակուսի թիվ է, այն միշտ կարելի է համարել \left(x+\frac{b}{2}\right)^{2} ամբողջ մաս։
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Բարձրացրեք քառակուսի արմատ հավասարման երկու կողմերը:
x+\frac{3}{4}=\frac{7}{4} x+\frac{3}{4}=-\frac{7}{4}
Պարզեցնել:
x=1 x=-\frac{5}{2}
Հանեք \frac{3}{4} հավասարման երկու կողմից: