Skip դեպի հիմնական բովանդակությունը
Լուծել x-ի համար
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

\left(x^{2}-6x+9\right)\left(10-17x\right)^{2}=0
Նյուտոնի երկանդամի \left(a-b\right)^{2}=a^{2}-2ab+b^{2} միջոցով ընդարձակեք \left(x-3\right)^{2}:
\left(x^{2}-6x+9\right)\left(100-340x+289x^{2}\right)=0
Նյուտոնի երկանդամի \left(a-b\right)^{2}=a^{2}-2ab+b^{2} միջոցով ընդարձակեք \left(10-17x\right)^{2}:
4741x^{2}-2074x^{3}+289x^{4}-3660x+900=0
Օգտագործեք բաժանիչ հատկությունը՝ x^{2}-6x+9-ը 100-340x+289x^{2}-ով բազմապատկելու և նման պայմանները համակցելու համար:
289x^{4}-2074x^{3}+4741x^{2}-3660x+900=0
Վերադասավորեք հավասարումը՝ բերելով այն ստանդարտ ձևի: Դասավորեք անդամները բարձրից ցածր:
±\frac{900}{289},±\frac{900}{17},±900,±\frac{450}{289},±\frac{450}{17},±450,±\frac{300}{289},±\frac{300}{17},±300,±\frac{225}{289},±\frac{225}{17},±225,±\frac{180}{289},±\frac{180}{17},±180,±\frac{150}{289},±\frac{150}{17},±150,±\frac{100}{289},±\frac{100}{17},±100,±\frac{90}{289},±\frac{90}{17},±90,±\frac{75}{289},±\frac{75}{17},±75,±\frac{60}{289},±\frac{60}{17},±60,±\frac{50}{289},±\frac{50}{17},±50,±\frac{45}{289},±\frac{45}{17},±45,±\frac{36}{289},±\frac{36}{17},±36,±\frac{30}{289},±\frac{30}{17},±30,±\frac{25}{289},±\frac{25}{17},±25,±\frac{20}{289},±\frac{20}{17},±20,±\frac{18}{289},±\frac{18}{17},±18,±\frac{15}{289},±\frac{15}{17},±15,±\frac{12}{289},±\frac{12}{17},±12,±\frac{10}{289},±\frac{10}{17},±10,±\frac{9}{289},±\frac{9}{17},±9,±\frac{6}{289},±\frac{6}{17},±6,±\frac{5}{289},±\frac{5}{17},±5,±\frac{4}{289},±\frac{4}{17},±4,±\frac{3}{289},±\frac{3}{17},±3,±\frac{2}{289},±\frac{2}{17},±2,±\frac{1}{289},±\frac{1}{17},±1
Ըստ Ռացիոնալ արմատի թեորեմի՝ բազմանդամի բոլոր ռացիոնալ արմատները \frac{p}{q} տեսքով են, որտեղ p բաժանում է 900 հաստատուն անդամը, իսկ q բաժանում է 289 առաջատար գործակիցը: Նշել բոլոր թեկնածուները \frac{p}{q}:
x=3
Գտեք մեկ արմատ՝ փորձելով բոլոր ամբողջ թվով արժեքները, սկսած ամենափոքրից մինչև բացարձակ արժեք: Եթե ոչ մի ամբողջ թվով արմատ չգտնվի, փորձեք կոտորակները:
289x^{3}-1207x^{2}+1120x-300=0
Ըստ Բազմապատիկի թեորեմի՝ x-k-ը բազմանդամի բազմապատիկն է յուրաքանչյուր k արմատի համար: Բաժանեք 289x^{4}-2074x^{3}+4741x^{2}-3660x+900 x-3-ի և ստացեք 289x^{3}-1207x^{2}+1120x-300: Լուծեք հավասարումը, որտեղ արդյունքը հավասարվում է 0:
±\frac{300}{289},±\frac{300}{17},±300,±\frac{150}{289},±\frac{150}{17},±150,±\frac{100}{289},±\frac{100}{17},±100,±\frac{75}{289},±\frac{75}{17},±75,±\frac{60}{289},±\frac{60}{17},±60,±\frac{50}{289},±\frac{50}{17},±50,±\frac{30}{289},±\frac{30}{17},±30,±\frac{25}{289},±\frac{25}{17},±25,±\frac{20}{289},±\frac{20}{17},±20,±\frac{15}{289},±\frac{15}{17},±15,±\frac{12}{289},±\frac{12}{17},±12,±\frac{10}{289},±\frac{10}{17},±10,±\frac{6}{289},±\frac{6}{17},±6,±\frac{5}{289},±\frac{5}{17},±5,±\frac{4}{289},±\frac{4}{17},±4,±\frac{3}{289},±\frac{3}{17},±3,±\frac{2}{289},±\frac{2}{17},±2,±\frac{1}{289},±\frac{1}{17},±1
Ըստ Ռացիոնալ արմատի թեորեմի՝ բազմանդամի բոլոր ռացիոնալ արմատները \frac{p}{q} տեսքով են, որտեղ p բաժանում է -300 հաստատուն անդամը, իսկ q բաժանում է 289 առաջատար գործակիցը: Նշել բոլոր թեկնածուները \frac{p}{q}:
x=3
Գտեք մեկ արմատ՝ փորձելով բոլոր ամբողջ թվով արժեքները, սկսած ամենափոքրից մինչև բացարձակ արժեք: Եթե ոչ մի ամբողջ թվով արմատ չգտնվի, փորձեք կոտորակները:
289x^{2}-340x+100=0
Ըստ Բազմապատիկի թեորեմի՝ x-k-ը բազմանդամի բազմապատիկն է յուրաքանչյուր k արմատի համար: Բաժանեք 289x^{3}-1207x^{2}+1120x-300 x-3-ի և ստացեք 289x^{2}-340x+100: Լուծեք հավասարումը, որտեղ արդյունքը հավասարվում է 0:
x=\frac{-\left(-340\right)±\sqrt{\left(-340\right)^{2}-4\times 289\times 100}}{2\times 289}
Հետևյալ ձևի բոլոր հավասարումները՝ ax^{2}+bx+c=0 կարող են լուծվել քառ. հավ. արմ. բանաձևի միջոցով՝ \frac{-b±\sqrt{b^{2}-4ac}}{2a}: Քառ. հավ. արմ. բանաձևում փոխարինեք 289-ը a-ով, -340-ը b-ով և 100-ը c-ով:
x=\frac{340±0}{578}
Կատարեք հաշվարկումներ:
x=\frac{10}{17}
Լուծումները նույնն են:
x=3 x=\frac{10}{17}
Թվարկեք բոլոր գտնված լուծումները: