Skip դեպի հիմնական բովանդակությունը
Հաստատել
կեղծ
Tick mark Image

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

\sqrt{\frac{1}{16}+\left(\frac{1}{3}\right)^{2}}=\frac{1}{2}+\frac{1}{3}
Հաշվեք 2-ի \frac{1}{4} աստիճանը և ստացեք \frac{1}{16}:
\sqrt{\frac{1}{16}+\frac{1}{9}}=\frac{1}{2}+\frac{1}{3}
Հաշվեք 2-ի \frac{1}{3} աստիճանը և ստացեք \frac{1}{9}:
\sqrt{\frac{9}{144}+\frac{16}{144}}=\frac{1}{2}+\frac{1}{3}
16-ի և 9-ի ամենափոքր ընդհանուր բազմապատիկը 144 է: Փոխարկեք \frac{1}{16}-ը և \frac{1}{9}-ը 144 հայտարարով կոտորակների:
\sqrt{\frac{9+16}{144}}=\frac{1}{2}+\frac{1}{3}
Քանի որ \frac{9}{144}-ը և \frac{16}{144}-ը նույն հայտարարն ունեն, նրանց գումարը կարող եք ստանալ՝ գումարելով համարիչները:
\sqrt{\frac{25}{144}}=\frac{1}{2}+\frac{1}{3}
Գումարեք 9 և 16 և ստացեք 25:
\frac{5}{12}=\frac{1}{2}+\frac{1}{3}
Վերագրեք \frac{25}{144} բաժանման քառակուսի արմատը որպես \frac{\sqrt{25}}{\sqrt{144}} քառակուսի արմատների բաժանում: Հանեք համարիչի և հայտարարի քառակուսի արմատը:
\frac{5}{12}=\frac{3}{6}+\frac{2}{6}
2-ի և 3-ի ամենափոքր ընդհանուր բազմապատիկը 6 է: Փոխարկեք \frac{1}{2}-ը և \frac{1}{3}-ը 6 հայտարարով կոտորակների:
\frac{5}{12}=\frac{3+2}{6}
Քանի որ \frac{3}{6}-ը և \frac{2}{6}-ը նույն հայտարարն ունեն, նրանց գումարը կարող եք ստանալ՝ գումարելով համարիչները:
\frac{5}{12}=\frac{5}{6}
Գումարեք 3 և 2 և ստացեք 5:
\frac{5}{12}=\frac{10}{12}
12-ի և 6-ի ամենափոքր ընդհանուր բազմապատիկը 12 է: Փոխարկեք \frac{5}{12}-ը և \frac{5}{6}-ը 12 հայտարարով կոտորակների:
\text{false}
Համեմատել \frac{5}{12}-ը և \frac{10}{12}-ը: