Skip դեպի հիմնական բովանդակությունը
Լուծել m, n-ի համար
Tick mark Image

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

m+n=-3,-3m+2n=1
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
m+n=-3
Ընտրեք հավասարումներից մեկը և լուծեք այն m-ի համար՝ առանձնացնելով m-ը հավասարության նշանի ձախ կողմում:
m=-n-3
Հանեք n հավասարման երկու կողմից:
-3\left(-n-3\right)+2n=1
Փոխարինեք -n-3-ը m-ով մյուս հավասարման մեջ՝ -3m+2n=1:
3n+9+2n=1
Բազմապատկեք -3 անգամ -n-3:
5n+9=1
Գումարեք 3n 2n-ին:
5n=-8
Հանեք 9 հավասարման երկու կողմից:
n=-\frac{8}{5}
Բաժանեք երկու կողմերը 5-ի:
m=-\left(-\frac{8}{5}\right)-3
Փոխարինեք -\frac{8}{5}-ը n-ով m=-n-3-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես m-ի համար:
m=\frac{8}{5}-3
Բազմապատկեք -1 անգամ -\frac{8}{5}:
m=-\frac{7}{5}
Գումարեք -3 \frac{8}{5}-ին:
m=-\frac{7}{5},n=-\frac{8}{5}
Այժմ համակարգը լուծվել է:
m+n=-3,-3m+2n=1
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}1&1\\-3&2\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-3\\1\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}1&1\\-3&2\end{matrix}\right))\left(\begin{matrix}1&1\\-3&2\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-3&2\end{matrix}\right))\left(\begin{matrix}-3\\1\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}1&1\\-3&2\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-3&2\end{matrix}\right))\left(\begin{matrix}-3\\1\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-3&2\end{matrix}\right))\left(\begin{matrix}-3\\1\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-3\right)}&-\frac{1}{2-\left(-3\right)}\\-\frac{-3}{2-\left(-3\right)}&\frac{1}{2-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}-3\\1\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&-\frac{1}{5}\\\frac{3}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}-3\\1\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\left(-3\right)-\frac{1}{5}\\\frac{3}{5}\left(-3\right)+\frac{1}{5}\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{5}\\-\frac{8}{5}\end{matrix}\right)
Կատարել թվաբանություն:
m=-\frac{7}{5},n=-\frac{8}{5}
Արտահանեք մատրիցայի m և n տարրերը:
m+n=-3,-3m+2n=1
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
-3m-3n=-3\left(-3\right),-3m+2n=1
m-ը և -3m-ը հավասարեցնելու համար բազմապատկեք առաջին հավասարման յուրաքանչյուր կողմի բոլոր անդամները -3-ով, իսկ երկրորդ հավասարման յուրաքանչյուր կողմի բոլոր անդամները՝ 1-ով:
-3m-3n=9,-3m+2n=1
Պարզեցնել:
-3m+3m-3n-2n=9-1
Հանեք -3m+2n=1 -3m-3n=9-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
-3n-2n=9-1
Գումարեք -3m 3m-ին: -3m-ը և 3m-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
-5n=9-1
Գումարեք -3n -2n-ին:
-5n=8
Գումարեք 9 -1-ին:
n=-\frac{8}{5}
Բաժանեք երկու կողմերը -5-ի:
-3m+2\left(-\frac{8}{5}\right)=1
Փոխարինեք -\frac{8}{5}-ը n-ով -3m+2n=1-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես m-ի համար:
-3m-\frac{16}{5}=1
Բազմապատկեք 2 անգամ -\frac{8}{5}:
-3m=\frac{21}{5}
Գումարեք \frac{16}{5} հավասարման երկու կողմին:
m=-\frac{7}{5}
Բաժանեք երկու կողմերը -3-ի:
m=-\frac{7}{5},n=-\frac{8}{5}
Այժմ համակարգը լուծվել է: