Skip դեպի հիմնական բովանդակությունը
Լուծել y, x-ի համար
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

y-2x=-3
Դիտարկել առաջին հավասարումը: Հանեք 2x երկու կողմերից:
y-2x=-3,y+x=-6
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
y-2x=-3
Ընտրեք հավասարումներից մեկը և լուծեք այն y-ի համար՝ առանձնացնելով y-ը հավասարության նշանի ձախ կողմում:
y=2x-3
Գումարեք 2x հավասարման երկու կողմին:
2x-3+x=-6
Փոխարինեք 2x-3-ը y-ով մյուս հավասարման մեջ՝ y+x=-6:
3x-3=-6
Գումարեք 2x x-ին:
3x=-3
Գումարեք 3 հավասարման երկու կողմին:
x=-1
Բաժանեք երկու կողմերը 3-ի:
y=2\left(-1\right)-3
Փոխարինեք -1-ը x-ով y=2x-3-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես y-ի համար:
y=-2-3
Բազմապատկեք 2 անգամ -1:
y=-5
Գումարեք -3 -2-ին:
y=-5,x=-1
Այժմ համակարգը լուծվել է:
y-2x=-3
Դիտարկել առաջին հավասարումը: Հանեք 2x երկու կողմերից:
y-2x=-3,y+x=-6
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}1&-2\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-3\\-6\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}1&-2\\1&1\end{matrix}\right))\left(\begin{matrix}1&-2\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&1\end{matrix}\right))\left(\begin{matrix}-3\\-6\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}1&-2\\1&1\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&1\end{matrix}\right))\left(\begin{matrix}-3\\-6\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&1\end{matrix}\right))\left(\begin{matrix}-3\\-6\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-2\right)}&-\frac{-2}{1-\left(-2\right)}\\-\frac{1}{1-\left(-2\right)}&\frac{1}{1-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}-3\\-6\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{2}{3}\\-\frac{1}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}-3\\-6\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\left(-3\right)+\frac{2}{3}\left(-6\right)\\-\frac{1}{3}\left(-3\right)+\frac{1}{3}\left(-6\right)\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-5\\-1\end{matrix}\right)
Կատարել թվաբանություն:
y=-5,x=-1
Արտահանեք մատրիցայի y և x տարրերը:
y-2x=-3
Դիտարկել առաջին հավասարումը: Հանեք 2x երկու կողմերից:
y-2x=-3,y+x=-6
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
y-y-2x-x=-3+6
Հանեք y+x=-6 y-2x=-3-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
-2x-x=-3+6
Գումարեք y -y-ին: y-ը և -y-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
-3x=-3+6
Գումարեք -2x -x-ին:
-3x=3
Գումարեք -3 6-ին:
x=-1
Բաժանեք երկու կողմերը -3-ի:
y-1=-6
Փոխարինեք -1-ը x-ով y+x=-6-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես y-ի համար:
y=-5
Գումարեք 1 հավասարման երկու կողմին:
y=-5,x=-1
Այժմ համակարգը լուծվել է: