Skip դեպի հիմնական բովանդակությունը
Լուծել y, x-ի համար
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

y+x=6
Դիտարկել առաջին հավասարումը: Հավելել x-ը երկու կողմերում:
y-\frac{1}{2}x=-1
Դիտարկել երկրորդ հավասարումը: Հանեք \frac{1}{2}x երկու կողմերից:
y+x=6,y-\frac{1}{2}x=-1
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
y+x=6
Ընտրեք հավասարումներից մեկը և լուծեք այն y-ի համար՝ առանձնացնելով y-ը հավասարության նշանի ձախ կողմում:
y=-x+6
Հանեք x հավասարման երկու կողմից:
-x+6-\frac{1}{2}x=-1
Փոխարինեք -x+6-ը y-ով մյուս հավասարման մեջ՝ y-\frac{1}{2}x=-1:
-\frac{3}{2}x+6=-1
Գումարեք -x -\frac{x}{2}-ին:
-\frac{3}{2}x=-7
Հանեք 6 հավասարման երկու կողմից:
x=\frac{14}{3}
Բաժանեք հավասարման երկու կողմերը -\frac{3}{2}-ի, որը նույնն է, ինչ բազմապատկել երկու կողմերը կոտորակի հակադարձով:
y=-\frac{14}{3}+6
Փոխարինեք \frac{14}{3}-ը x-ով y=-x+6-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես y-ի համար:
y=\frac{4}{3}
Գումարեք 6 -\frac{14}{3}-ին:
y=\frac{4}{3},x=\frac{14}{3}
Այժմ համակարգը լուծվել է:
y+x=6
Դիտարկել առաջին հավասարումը: Հավելել x-ը երկու կողմերում:
y-\frac{1}{2}x=-1
Դիտարկել երկրորդ հավասարումը: Հանեք \frac{1}{2}x երկու կողմերից:
y+x=6,y-\frac{1}{2}x=-1
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}1&1\\1&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}6\\-1\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}1&1\\1&-\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}1&1\\1&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}6\\-1\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}1&1\\1&-\frac{1}{2}\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}6\\-1\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}6\\-1\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{\frac{1}{2}}{-\frac{1}{2}-1}&-\frac{1}{-\frac{1}{2}-1}\\-\frac{1}{-\frac{1}{2}-1}&\frac{1}{-\frac{1}{2}-1}\end{matrix}\right)\left(\begin{matrix}6\\-1\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{2}{3}\\\frac{2}{3}&-\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}6\\-1\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 6+\frac{2}{3}\left(-1\right)\\\frac{2}{3}\times 6-\frac{2}{3}\left(-1\right)\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3}\\\frac{14}{3}\end{matrix}\right)
Կատարել թվաբանություն:
y=\frac{4}{3},x=\frac{14}{3}
Արտահանեք մատրիցայի y և x տարրերը:
y+x=6
Դիտարկել առաջին հավասարումը: Հավելել x-ը երկու կողմերում:
y-\frac{1}{2}x=-1
Դիտարկել երկրորդ հավասարումը: Հանեք \frac{1}{2}x երկու կողմերից:
y+x=6,y-\frac{1}{2}x=-1
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
y-y+x+\frac{1}{2}x=6+1
Հանեք y-\frac{1}{2}x=-1 y+x=6-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
x+\frac{1}{2}x=6+1
Գումարեք y -y-ին: y-ը և -y-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
\frac{3}{2}x=6+1
Գումարեք x \frac{x}{2}-ին:
\frac{3}{2}x=7
Գումարեք 6 1-ին:
x=\frac{14}{3}
Բաժանեք հավասարման երկու կողմերը \frac{3}{2}-ի, որը նույնն է, ինչ բազմապատկել երկու կողմերը կոտորակի հակադարձով:
y-\frac{1}{2}\times \frac{14}{3}=-1
Փոխարինեք \frac{14}{3}-ը x-ով y-\frac{1}{2}x=-1-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես y-ի համար:
y-\frac{7}{3}=-1
Բազմապատկեք -\frac{1}{2} անգամ \frac{14}{3}-ը՝ բազմապատկելով համարիչ անգամ համարիչ և հայտարար անգամ հայտարար: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը ամենացածր անդամների:
y=\frac{4}{3}
Գումարեք \frac{7}{3} հավասարման երկու կողմին:
y=\frac{4}{3},x=\frac{14}{3}
Այժմ համակարգը լուծվել է: