Skip դեպի հիմնական բովանդակությունը
Լուծել x, y-ի համար
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

y+4x=4
Դիտարկել երկրորդ հավասարումը: Հավելել 4x-ը երկու կողմերում:
x-y=1,4x+y=4
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
x-y=1
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
x=y+1
Գումարեք y հավասարման երկու կողմին:
4\left(y+1\right)+y=4
Փոխարինեք y+1-ը x-ով մյուս հավասարման մեջ՝ 4x+y=4:
4y+4+y=4
Բազմապատկեք 4 անգամ y+1:
5y+4=4
Գումարեք 4y y-ին:
5y=0
Հանեք 4 հավասարման երկու կողմից:
y=0
Բաժանեք երկու կողմերը 5-ի:
x=1
Փոխարինեք 0-ը y-ով x=y+1-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=1,y=0
Այժմ համակարգը լուծվել է:
y+4x=4
Դիտարկել երկրորդ հավասարումը: Հավելել 4x-ը երկու կողմերում:
x-y=1,4x+y=4
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}1&-1\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\4\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}1&-1\\4&1\end{matrix}\right))\left(\begin{matrix}1&-1\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\4&1\end{matrix}\right))\left(\begin{matrix}1\\4\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}1&-1\\4&1\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\4&1\end{matrix}\right))\left(\begin{matrix}1\\4\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\4&1\end{matrix}\right))\left(\begin{matrix}1\\4\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-4\right)}&-\frac{-1}{1-\left(-4\right)}\\-\frac{4}{1-\left(-4\right)}&\frac{1}{1-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}1\\4\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{1}{5}\\-\frac{4}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}1\\4\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}+\frac{1}{5}\times 4\\-\frac{4}{5}+\frac{1}{5}\times 4\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\0\end{matrix}\right)
Կատարել թվաբանություն:
x=1,y=0
Արտահանեք մատրիցայի x և y տարրերը:
y+4x=4
Դիտարկել երկրորդ հավասարումը: Հավելել 4x-ը երկու կողմերում:
x-y=1,4x+y=4
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
4x+4\left(-1\right)y=4,4x+y=4
x-ը և 4x-ը հավասարեցնելու համար բազմապատկեք առաջին հավասարման յուրաքանչյուր կողմի բոլոր անդամները 4-ով, իսկ երկրորդ հավասարման յուրաքանչյուր կողմի բոլոր անդամները՝ 1-ով:
4x-4y=4,4x+y=4
Պարզեցնել:
4x-4x-4y-y=4-4
Հանեք 4x+y=4 4x-4y=4-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
-4y-y=4-4
Գումարեք 4x -4x-ին: 4x-ը և -4x-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
-5y=4-4
Գումարեք -4y -y-ին:
-5y=0
Գումարեք 4 -4-ին:
y=0
Բաժանեք երկու կողմերը -5-ի:
4x=4
Փոխարինեք 0-ը y-ով 4x+y=4-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=1
Բաժանեք երկու կողմերը 4-ի:
x=1,y=0
Այժմ համակարգը լուծվել է: