Skip դեպի հիմնական բովանդակությունը
Լուծել x, y-ի համար
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

x-2y=1,x+2y=3
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
x-2y=1
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
x=2y+1
Գումարեք 2y հավասարման երկու կողմին:
2y+1+2y=3
Փոխարինեք 2y+1-ը x-ով մյուս հավասարման մեջ՝ x+2y=3:
4y+1=3
Գումարեք 2y 2y-ին:
4y=2
Հանեք 1 հավասարման երկու կողմից:
y=\frac{1}{2}
Բաժանեք երկու կողմերը 4-ի:
x=2\times \frac{1}{2}+1
Փոխարինեք \frac{1}{2}-ը y-ով x=2y+1-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=1+1
Բազմապատկեք 2 անգամ \frac{1}{2}:
x=2
Գումարեք 1 1-ին:
x=2,y=\frac{1}{2}
Այժմ համակարգը լուծվել է:
x-2y=1,x+2y=3
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}1&-2\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\3\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}1&-2\\1&2\end{matrix}\right))\left(\begin{matrix}1&-2\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&2\end{matrix}\right))\left(\begin{matrix}1\\3\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}1&-2\\1&2\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&2\end{matrix}\right))\left(\begin{matrix}1\\3\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&2\end{matrix}\right))\left(\begin{matrix}1\\3\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-2\right)}&-\frac{-2}{2-\left(-2\right)}\\-\frac{1}{2-\left(-2\right)}&\frac{1}{2-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}1\\3\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\-\frac{1}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}1\\3\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}+\frac{1}{2}\times 3\\-\frac{1}{4}+\frac{1}{4}\times 3\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\\frac{1}{2}\end{matrix}\right)
Կատարել թվաբանություն:
x=2,y=\frac{1}{2}
Արտահանեք մատրիցայի x և y տարրերը:
x-2y=1,x+2y=3
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
x-x-2y-2y=1-3
Հանեք x+2y=3 x-2y=1-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
-2y-2y=1-3
Գումարեք x -x-ին: x-ը և -x-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
-4y=1-3
Գումարեք -2y -2y-ին:
-4y=-2
Գումարեք 1 -3-ին:
y=\frac{1}{2}
Բաժանեք երկու կողմերը -4-ի:
x+2\times \frac{1}{2}=3
Փոխարինեք \frac{1}{2}-ը y-ով x+2y=3-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x+1=3
Բազմապատկեք 2 անգամ \frac{1}{2}:
x=2
Հանեք 1 հավասարման երկու կողմից:
x=2,y=\frac{1}{2}
Այժմ համակարգը լուծվել է: