Լուծել x, y-ի համար
x=120
y=80
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
x+y=200,x+\frac{1}{2}y=160
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
x+y=200
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
x=-y+200
Հանեք y հավասարման երկու կողմից:
-y+200+\frac{1}{2}y=160
Փոխարինեք -y+200-ը x-ով մյուս հավասարման մեջ՝ x+\frac{1}{2}y=160:
-\frac{1}{2}y+200=160
Գումարեք -y \frac{y}{2}-ին:
-\frac{1}{2}y=-40
Հանեք 200 հավասարման երկու կողմից:
y=80
Բազմապատկեք երկու կողմերը -2-ով:
x=-80+200
Փոխարինեք 80-ը y-ով x=-y+200-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=120
Գումարեք 200 -80-ին:
x=120,y=80
Այժմ համակարգը լուծվել է:
x+y=200,x+\frac{1}{2}y=160
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}1&1\\1&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}200\\160\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}1&1\\1&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}1&1\\1&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}200\\160\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}1&1\\1&\frac{1}{2}\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}200\\160\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}200\\160\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{2}}{\frac{1}{2}-1}&-\frac{1}{\frac{1}{2}-1}\\-\frac{1}{\frac{1}{2}-1}&\frac{1}{\frac{1}{2}-1}\end{matrix}\right)\left(\begin{matrix}200\\160\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&2\\2&-2\end{matrix}\right)\left(\begin{matrix}200\\160\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-200+2\times 160\\2\times 200-2\times 160\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}120\\80\end{matrix}\right)
Կատարել թվաբանություն:
x=120,y=80
Արտահանեք մատրիցայի x և y տարրերը:
x+y=200,x+\frac{1}{2}y=160
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
x-x+y-\frac{1}{2}y=200-160
Հանեք x+\frac{1}{2}y=160 x+y=200-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
y-\frac{1}{2}y=200-160
Գումարեք x -x-ին: x-ը և -x-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
\frac{1}{2}y=200-160
Գումարեք y -\frac{y}{2}-ին:
\frac{1}{2}y=40
Գումարեք 200 -160-ին:
y=80
Բազմապատկեք երկու կողմերը 2-ով:
x+\frac{1}{2}\times 80=160
Փոխարինեք 80-ը y-ով x+\frac{1}{2}y=160-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x+40=160
Բազմապատկեք \frac{1}{2} անգամ 80:
x=120
Հանեք 40 հավասարման երկու կողմից:
x=120,y=80
Այժմ համակարգը լուծվել է:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}