Լուծել x, y-ի համար
x=0
y=0
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
x+2y-y=-x
Դիտարկել առաջին հավասարումը: Հանեք y երկու կողմերից:
x+y=-x
Համակցեք 2y և -y և ստացեք y:
x+y+x=0
Հավելել x-ը երկու կողմերում:
2x+y=0
Համակցեք x և x և ստացեք 2x:
2x+y=0,x+y=0
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
2x+y=0
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
2x=-y
Հանեք y հավասարման երկու կողմից:
x=\frac{1}{2}\left(-1\right)y
Բաժանեք երկու կողմերը 2-ի:
x=-\frac{1}{2}y
Բազմապատկեք \frac{1}{2} անգամ -y:
-\frac{1}{2}y+y=0
Փոխարինեք -\frac{y}{2}-ը x-ով մյուս հավասարման մեջ՝ x+y=0:
\frac{1}{2}y=0
Գումարեք -\frac{y}{2} y-ին:
y=0
Բազմապատկեք երկու կողմերը 2-ով:
x=0
Փոխարինեք 0-ը y-ով x=-\frac{1}{2}y-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=0,y=0
Այժմ համակարգը լուծվել է:
x+2y-y=-x
Դիտարկել առաջին հավասարումը: Հանեք y երկու կողմերից:
x+y=-x
Համակցեք 2y և -y և ստացեք y:
x+y+x=0
Հավելել x-ը երկու կողմերում:
2x+y=0
Համակցեք x և x և ստացեք 2x:
2x+y=0,x+y=0
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}2&1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}2&1\\1&1\end{matrix}\right))\left(\begin{matrix}2&1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&1\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}2&1\\1&1\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&1\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&1\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-1}&-\frac{1}{2-1}\\-\frac{1}{2-1}&\frac{2}{2-1}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-1\\-1&2\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
Բազմապատկեք մատրիցաները:
x=0,y=0
Արտահանեք մատրիցայի x և y տարրերը:
x+2y-y=-x
Դիտարկել առաջին հավասարումը: Հանեք y երկու կողմերից:
x+y=-x
Համակցեք 2y և -y և ստացեք y:
x+y+x=0
Հավելել x-ը երկու կողմերում:
2x+y=0
Համակցեք x և x և ստացեք 2x:
2x+y=0,x+y=0
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
2x-x+y-y=0
Հանեք x+y=0 2x+y=0-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
2x-x=0
Գումարեք y -y-ին: y-ը և -y-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
x=0
Գումարեք 2x -x-ին:
y=0
Փոխարինեք 0-ը x-ով x+y=0-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես y-ի համար:
x=0,y=0
Այժմ համակարգը լուծվել է:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}