Skip դեպի հիմնական բովանդակությունը
Լուծել x, y-ի համար
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

x+2y=8,x-3y=9
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
x+2y=8
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
x=-2y+8
Հանեք 2y հավասարման երկու կողմից:
-2y+8-3y=9
Փոխարինեք -2y+8-ը x-ով մյուս հավասարման մեջ՝ x-3y=9:
-5y+8=9
Գումարեք -2y -3y-ին:
-5y=1
Հանեք 8 հավասարման երկու կողմից:
y=-\frac{1}{5}
Բաժանեք երկու կողմերը -5-ի:
x=-2\left(-\frac{1}{5}\right)+8
Փոխարինեք -\frac{1}{5}-ը y-ով x=-2y+8-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=\frac{2}{5}+8
Բազմապատկեք -2 անգամ -\frac{1}{5}:
x=\frac{42}{5}
Գումարեք 8 \frac{2}{5}-ին:
x=\frac{42}{5},y=-\frac{1}{5}
Այժմ համակարգը լուծվել է:
x+2y=8,x-3y=9
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}1&2\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\9\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}1&2\\1&-3\end{matrix}\right))\left(\begin{matrix}1&2\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-3\end{matrix}\right))\left(\begin{matrix}8\\9\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}1&2\\1&-3\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-3\end{matrix}\right))\left(\begin{matrix}8\\9\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-3\end{matrix}\right))\left(\begin{matrix}8\\9\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-2}&-\frac{2}{-3-2}\\-\frac{1}{-3-2}&\frac{1}{-3-2}\end{matrix}\right)\left(\begin{matrix}8\\9\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}&\frac{2}{5}\\\frac{1}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}8\\9\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}\times 8+\frac{2}{5}\times 9\\\frac{1}{5}\times 8-\frac{1}{5}\times 9\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{42}{5}\\-\frac{1}{5}\end{matrix}\right)
Կատարել թվաբանություն:
x=\frac{42}{5},y=-\frac{1}{5}
Արտահանեք մատրիցայի x և y տարրերը:
x+2y=8,x-3y=9
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
x-x+2y+3y=8-9
Հանեք x-3y=9 x+2y=8-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
2y+3y=8-9
Գումարեք x -x-ին: x-ը և -x-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
5y=8-9
Գումարեք 2y 3y-ին:
5y=-1
Գումարեք 8 -9-ին:
y=-\frac{1}{5}
Բաժանեք երկու կողմերը 5-ի:
x-3\left(-\frac{1}{5}\right)=9
Փոխարինեք -\frac{1}{5}-ը y-ով x-3y=9-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x+\frac{3}{5}=9
Բազմապատկեք -3 անգամ -\frac{1}{5}:
x=\frac{42}{5}
Հանեք \frac{3}{5} հավասարման երկու կողմից:
x=\frac{42}{5},y=-\frac{1}{5}
Այժմ համակարգը լուծվել է: