Skip դեպի հիմնական բովանդակությունը
Լուծել x, y-ի համար
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

x+2y=11,x-5y=-17
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
x+2y=11
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
x=-2y+11
Հանեք 2y հավասարման երկու կողմից:
-2y+11-5y=-17
Փոխարինեք -2y+11-ը x-ով մյուս հավասարման մեջ՝ x-5y=-17:
-7y+11=-17
Գումարեք -2y -5y-ին:
-7y=-28
Հանեք 11 հավասարման երկու կողմից:
y=4
Բաժանեք երկու կողմերը -7-ի:
x=-2\times 4+11
Փոխարինեք 4-ը y-ով x=-2y+11-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=-8+11
Բազմապատկեք -2 անգամ 4:
x=3
Գումարեք 11 -8-ին:
x=3,y=4
Այժմ համակարգը լուծվել է:
x+2y=11,x-5y=-17
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}1&2\\1&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\-17\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}1&2\\1&-5\end{matrix}\right))\left(\begin{matrix}1&2\\1&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-5\end{matrix}\right))\left(\begin{matrix}11\\-17\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}1&2\\1&-5\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-5\end{matrix}\right))\left(\begin{matrix}11\\-17\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-5\end{matrix}\right))\left(\begin{matrix}11\\-17\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{-5-2}&-\frac{2}{-5-2}\\-\frac{1}{-5-2}&\frac{1}{-5-2}\end{matrix}\right)\left(\begin{matrix}11\\-17\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{7}&\frac{2}{7}\\\frac{1}{7}&-\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}11\\-17\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{7}\times 11+\frac{2}{7}\left(-17\right)\\\frac{1}{7}\times 11-\frac{1}{7}\left(-17\right)\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\4\end{matrix}\right)
Կատարել թվաբանություն:
x=3,y=4
Արտահանեք մատրիցայի x և y տարրերը:
x+2y=11,x-5y=-17
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
x-x+2y+5y=11+17
Հանեք x-5y=-17 x+2y=11-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
2y+5y=11+17
Գումարեք x -x-ին: x-ը և -x-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
7y=11+17
Գումարեք 2y 5y-ին:
7y=28
Գումարեք 11 17-ին:
y=4
Բաժանեք երկու կողմերը 7-ի:
x-5\times 4=-17
Փոխարինեք 4-ը y-ով x-5y=-17-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x-20=-17
Բազմապատկեք -5 անգամ 4:
x=3
Գումարեք 20 հավասարման երկու կողմին:
x=3,y=4
Այժմ համակարգը լուծվել է: