Skip դեպի հիմնական բովանդակությունը
Լուծել x, y-ի համար
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

x+2y=1,3x+y=0
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
x+2y=1
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
x=-2y+1
Հանեք 2y հավասարման երկու կողմից:
3\left(-2y+1\right)+y=0
Փոխարինեք -2y+1-ը x-ով մյուս հավասարման մեջ՝ 3x+y=0:
-6y+3+y=0
Բազմապատկեք 3 անգամ -2y+1:
-5y+3=0
Գումարեք -6y y-ին:
-5y=-3
Հանեք 3 հավասարման երկու կողմից:
y=\frac{3}{5}
Բաժանեք երկու կողմերը -5-ի:
x=-2\times \frac{3}{5}+1
Փոխարինեք \frac{3}{5}-ը y-ով x=-2y+1-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=-\frac{6}{5}+1
Բազմապատկեք -2 անգամ \frac{3}{5}:
x=-\frac{1}{5}
Գումարեք 1 -\frac{6}{5}-ին:
x=-\frac{1}{5},y=\frac{3}{5}
Այժմ համակարգը լուծվել է:
x+2y=1,3x+y=0
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}1&2\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\0\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}1&2\\3&1\end{matrix}\right))\left(\begin{matrix}1&2\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&1\end{matrix}\right))\left(\begin{matrix}1\\0\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}1&2\\3&1\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&1\end{matrix}\right))\left(\begin{matrix}1\\0\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&1\end{matrix}\right))\left(\begin{matrix}1\\0\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-2\times 3}&-\frac{2}{1-2\times 3}\\-\frac{3}{1-2\times 3}&\frac{1}{1-2\times 3}\end{matrix}\right)\left(\begin{matrix}1\\0\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&\frac{2}{5}\\\frac{3}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}1\\0\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\\\frac{3}{5}\end{matrix}\right)
Բազմապատկեք մատրիցաները:
x=-\frac{1}{5},y=\frac{3}{5}
Արտահանեք մատրիցայի x և y տարրերը:
x+2y=1,3x+y=0
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
3x+3\times 2y=3,3x+y=0
x-ը և 3x-ը հավասարեցնելու համար բազմապատկեք առաջին հավասարման յուրաքանչյուր կողմի բոլոր անդամները 3-ով, իսկ երկրորդ հավասարման յուրաքանչյուր կողմի բոլոր անդամները՝ 1-ով:
3x+6y=3,3x+y=0
Պարզեցնել:
3x-3x+6y-y=3
Հանեք 3x+y=0 3x+6y=3-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
6y-y=3
Գումարեք 3x -3x-ին: 3x-ը և -3x-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
5y=3
Գումարեք 6y -y-ին:
y=\frac{3}{5}
Բաժանեք երկու կողմերը 5-ի:
3x+\frac{3}{5}=0
Փոխարինեք \frac{3}{5}-ը y-ով 3x+y=0-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
3x=-\frac{3}{5}
Հանեք \frac{3}{5} հավասարման երկու կողմից:
x=-\frac{1}{5}
Բաժանեք երկու կողմերը 3-ի:
x=-\frac{1}{5},y=\frac{3}{5}
Այժմ համակարգը լուծվել է: