Skip դեպի հիմնական բովանդակությունը
Լուծել a, b-ի համար
Tick mark Image

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

a-b=0
Դիտարկել առաջին հավասարումը: Հանեք b երկու կողմերից:
a-b=0,a+b=5
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
a-b=0
Ընտրեք հավասարումներից մեկը և լուծեք այն a-ի համար՝ առանձնացնելով a-ը հավասարության նշանի ձախ կողմում:
a=b
Գումարեք b հավասարման երկու կողմին:
b+b=5
Փոխարինեք b-ը a-ով մյուս հավասարման մեջ՝ a+b=5:
2b=5
Գումարեք b b-ին:
b=\frac{5}{2}
Բաժանեք երկու կողմերը 2-ի:
a=\frac{5}{2}
Փոխարինեք \frac{5}{2}-ը b-ով a=b-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես a-ի համար:
a=\frac{5}{2},b=\frac{5}{2}
Այժմ համակարգը լուծվել է:
a-b=0
Դիտարկել առաջին հավասարումը: Հանեք b երկու կողմերից:
a-b=0,a+b=5
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}0\\5\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}0\\5\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}1&-1\\1&1\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}0\\5\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}0\\5\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-1\right)}&-\frac{-1}{1-\left(-1\right)}\\-\frac{1}{1-\left(-1\right)}&\frac{1}{1-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}0\\5\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}0\\5\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 5\\\frac{1}{2}\times 5\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2}\\\frac{5}{2}\end{matrix}\right)
Կատարել թվաբանություն:
a=\frac{5}{2},b=\frac{5}{2}
Արտահանեք մատրիցայի a և b տարրերը:
a-b=0
Դիտարկել առաջին հավասարումը: Հանեք b երկու կողմերից:
a-b=0,a+b=5
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
a-a-b-b=-5
Հանեք a+b=5 a-b=0-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
-b-b=-5
Գումարեք a -a-ին: a-ը և -a-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
-2b=-5
Գումարեք -b -b-ին:
b=\frac{5}{2}
Բաժանեք երկու կողմերը -2-ի:
a+\frac{5}{2}=5
Փոխարինեք \frac{5}{2}-ը b-ով a+b=5-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես a-ի համար:
a=\frac{5}{2}
Հանեք \frac{5}{2} հավասարման երկու կողմից:
a=\frac{5}{2},b=\frac{5}{2}
Այժմ համակարգը լուծվել է: