Լուծել a, b-ի համար
a=1
b=2
Կիսվեք
Պատճենահանված է clipboard
a+2b=5,a-2b=-3
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
a+2b=5
Ընտրեք հավասարումներից մեկը և լուծեք այն a-ի համար՝ առանձնացնելով a-ը հավասարության նշանի ձախ կողմում:
a=-2b+5
Հանեք 2b հավասարման երկու կողմից:
-2b+5-2b=-3
Փոխարինեք -2b+5-ը a-ով մյուս հավասարման մեջ՝ a-2b=-3:
-4b+5=-3
Գումարեք -2b -2b-ին:
-4b=-8
Հանեք 5 հավասարման երկու կողմից:
b=2
Բաժանեք երկու կողմերը -4-ի:
a=-2\times 2+5
Փոխարինեք 2-ը b-ով a=-2b+5-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես a-ի համար:
a=-4+5
Բազմապատկեք -2 անգամ 2:
a=1
Գումարեք 5 -4-ին:
a=1,b=2
Այժմ համակարգը լուծվել է:
a+2b=5,a-2b=-3
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}1&2\\1&-2\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}5\\-3\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}1&2\\1&-2\end{matrix}\right))\left(\begin{matrix}1&2\\1&-2\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-2\end{matrix}\right))\left(\begin{matrix}5\\-3\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}1&2\\1&-2\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-2\end{matrix}\right))\left(\begin{matrix}5\\-3\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-2\end{matrix}\right))\left(\begin{matrix}5\\-3\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-2}&-\frac{2}{-2-2}\\-\frac{1}{-2-2}&\frac{1}{-2-2}\end{matrix}\right)\left(\begin{matrix}5\\-3\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{4}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}5\\-3\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 5+\frac{1}{2}\left(-3\right)\\\frac{1}{4}\times 5-\frac{1}{4}\left(-3\right)\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
Կատարել թվաբանություն:
a=1,b=2
Արտահանեք մատրիցայի a և b տարրերը:
a+2b=5,a-2b=-3
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
a-a+2b+2b=5+3
Հանեք a-2b=-3 a+2b=5-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
2b+2b=5+3
Գումարեք a -a-ին: a-ը և -a-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
4b=5+3
Գումարեք 2b 2b-ին:
4b=8
Գումարեք 5 3-ին:
b=2
Բաժանեք երկու կողմերը 4-ի:
a-2\times 2=-3
Փոխարինեք 2-ը b-ով a-2b=-3-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես a-ի համար:
a-4=-3
Բազմապատկեք -2 անգամ 2:
a=1
Գումարեք 4 հավասարման երկու կողմին:
a=1,b=2
Այժմ համակարգը լուծվել է:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}