Լուծել x, y-ի համար
x = \frac{37}{11} = 3\frac{4}{11} \approx 3.363636364
y=\frac{4}{11}\approx 0.363636364
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
5x+6y=19,x-y=3
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
5x+6y=19
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
5x=-6y+19
Հանեք 6y հավասարման երկու կողմից:
x=\frac{1}{5}\left(-6y+19\right)
Բաժանեք երկու կողմերը 5-ի:
x=-\frac{6}{5}y+\frac{19}{5}
Բազմապատկեք \frac{1}{5} անգամ -6y+19:
-\frac{6}{5}y+\frac{19}{5}-y=3
Փոխարինեք \frac{-6y+19}{5}-ը x-ով մյուս հավասարման մեջ՝ x-y=3:
-\frac{11}{5}y+\frac{19}{5}=3
Գումարեք -\frac{6y}{5} -y-ին:
-\frac{11}{5}y=-\frac{4}{5}
Հանեք \frac{19}{5} հավասարման երկու կողմից:
y=\frac{4}{11}
Բաժանեք հավասարման երկու կողմերը -\frac{11}{5}-ի, որը նույնն է, ինչ բազմապատկել երկու կողմերը կոտորակի հակադարձով:
x=-\frac{6}{5}\times \frac{4}{11}+\frac{19}{5}
Փոխարինեք \frac{4}{11}-ը y-ով x=-\frac{6}{5}y+\frac{19}{5}-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=-\frac{24}{55}+\frac{19}{5}
Բազմապատկեք -\frac{6}{5} անգամ \frac{4}{11}-ը՝ բազմապատկելով համարիչ անգամ համարիչ և հայտարար անգամ հայտարար: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը ամենացածր անդամների:
x=\frac{37}{11}
Գումարեք \frac{19}{5} -\frac{24}{55}-ին՝ գտնելով ընդհանուր հայտարարը և գումարելով համարիչները: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը մինչև ամենացածր անդամը:
x=\frac{37}{11},y=\frac{4}{11}
Այժմ համակարգը լուծվել է:
5x+6y=19,x-y=3
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}5&6\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}19\\3\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}5&6\\1&-1\end{matrix}\right))\left(\begin{matrix}5&6\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&6\\1&-1\end{matrix}\right))\left(\begin{matrix}19\\3\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}5&6\\1&-1\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&6\\1&-1\end{matrix}\right))\left(\begin{matrix}19\\3\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&6\\1&-1\end{matrix}\right))\left(\begin{matrix}19\\3\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5\left(-1\right)-6}&-\frac{6}{5\left(-1\right)-6}\\-\frac{1}{5\left(-1\right)-6}&\frac{5}{5\left(-1\right)-6}\end{matrix}\right)\left(\begin{matrix}19\\3\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}&\frac{6}{11}\\\frac{1}{11}&-\frac{5}{11}\end{matrix}\right)\left(\begin{matrix}19\\3\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}\times 19+\frac{6}{11}\times 3\\\frac{1}{11}\times 19-\frac{5}{11}\times 3\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{37}{11}\\\frac{4}{11}\end{matrix}\right)
Կատարել թվաբանություն:
x=\frac{37}{11},y=\frac{4}{11}
Արտահանեք մատրիցայի x և y տարրերը:
5x+6y=19,x-y=3
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
5x+6y=19,5x+5\left(-1\right)y=5\times 3
5x-ը և x-ը հավասարեցնելու համար բազմապատկեք առաջին հավասարման յուրաքանչյուր կողմի բոլոր անդամները 1-ով, իսկ երկրորդ հավասարման յուրաքանչյուր կողմի բոլոր անդամները՝ 5-ով:
5x+6y=19,5x-5y=15
Պարզեցնել:
5x-5x+6y+5y=19-15
Հանեք 5x-5y=15 5x+6y=19-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
6y+5y=19-15
Գումարեք 5x -5x-ին: 5x-ը և -5x-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
11y=19-15
Գումարեք 6y 5y-ին:
11y=4
Գումարեք 19 -15-ին:
y=\frac{4}{11}
Բաժանեք երկու կողմերը 11-ի:
x-\frac{4}{11}=3
Փոխարինեք \frac{4}{11}-ը y-ով x-y=3-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=\frac{37}{11}
Գումարեք \frac{4}{11} հավասարման երկու կողմին:
x=\frac{37}{11},y=\frac{4}{11}
Այժմ համակարգը լուծվել է:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}