Skip դեպի հիմնական բովանդակությունը
Լուծել x, y-ի համար
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

4x+3y=0,3x+3y=1
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
4x+3y=0
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
4x=-3y
Հանեք 3y հավասարման երկու կողմից:
x=\frac{1}{4}\left(-3\right)y
Բաժանեք երկու կողմերը 4-ի:
x=-\frac{3}{4}y
Բազմապատկեք \frac{1}{4} անգամ -3y:
3\left(-\frac{3}{4}\right)y+3y=1
Փոխարինեք -\frac{3y}{4}-ը x-ով մյուս հավասարման մեջ՝ 3x+3y=1:
-\frac{9}{4}y+3y=1
Բազմապատկեք 3 անգամ -\frac{3y}{4}:
\frac{3}{4}y=1
Գումարեք -\frac{9y}{4} 3y-ին:
y=\frac{4}{3}
Բաժանեք հավասարման երկու կողմերը \frac{3}{4}-ի, որը նույնն է, ինչ բազմապատկել երկու կողմերը կոտորակի հակադարձով:
x=-\frac{3}{4}\times \frac{4}{3}
Փոխարինեք \frac{4}{3}-ը y-ով x=-\frac{3}{4}y-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=-1
Բազմապատկեք -\frac{3}{4} անգամ \frac{4}{3}-ը՝ բազմապատկելով համարիչ անգամ համարիչ և հայտարար անգամ հայտարար: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը ամենացածր անդամների:
x=-1,y=\frac{4}{3}
Այժմ համակարգը լուծվել է:
4x+3y=0,3x+3y=1
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}4&3\\3&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\1\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}4&3\\3&3\end{matrix}\right))\left(\begin{matrix}4&3\\3&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&3\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}4&3\\3&3\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&3\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&3\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4\times 3-3\times 3}&-\frac{3}{4\times 3-3\times 3}\\-\frac{3}{4\times 3-3\times 3}&\frac{4}{4\times 3-3\times 3}\end{matrix}\right)\left(\begin{matrix}0\\1\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-1\\-1&\frac{4}{3}\end{matrix}\right)\left(\begin{matrix}0\\1\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\\frac{4}{3}\end{matrix}\right)
Բազմապատկեք մատրիցաները:
x=-1,y=\frac{4}{3}
Արտահանեք մատրիցայի x և y տարրերը:
4x+3y=0,3x+3y=1
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
4x-3x+3y-3y=-1
Հանեք 3x+3y=1 4x+3y=0-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
4x-3x=-1
Գումարեք 3y -3y-ին: 3y-ը և -3y-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
x=-1
Գումարեք 4x -3x-ին:
3\left(-1\right)+3y=1
Փոխարինեք -1-ը x-ով 3x+3y=1-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես y-ի համար:
-3+3y=1
Բազմապատկեք 3 անգամ -1:
3y=4
Գումարեք 3 հավասարման երկու կողմին:
y=\frac{4}{3}
Բաժանեք երկու կողմերը 3-ի:
x=-1,y=\frac{4}{3}
Այժմ համակարգը լուծվել է: