Լուծել x, y-ի համար
x=0
y=-3
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
2x-y=3
Դիտարկել երկրորդ հավասարումը: Հավասարման երկու կողմերը բազմապատկեք 6-ով՝ 3,6,2-ի ընդհանուր ամենափոքր բազմապատիկով:
3x-2y=6,2x-y=3
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
3x-2y=6
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
3x=2y+6
Գումարեք 2y հավասարման երկու կողմին:
x=\frac{1}{3}\left(2y+6\right)
Բաժանեք երկու կողմերը 3-ի:
x=\frac{2}{3}y+2
Բազմապատկեք \frac{1}{3} անգամ 6+2y:
2\left(\frac{2}{3}y+2\right)-y=3
Փոխարինեք \frac{2y}{3}+2-ը x-ով մյուս հավասարման մեջ՝ 2x-y=3:
\frac{4}{3}y+4-y=3
Բազմապատկեք 2 անգամ \frac{2y}{3}+2:
\frac{1}{3}y+4=3
Գումարեք \frac{4y}{3} -y-ին:
\frac{1}{3}y=-1
Հանեք 4 հավասարման երկու կողմից:
y=-3
Բազմապատկեք երկու կողմերը 3-ով:
x=\frac{2}{3}\left(-3\right)+2
Փոխարինեք -3-ը y-ով x=\frac{2}{3}y+2-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=-2+2
Բազմապատկեք \frac{2}{3} անգամ -3:
x=0
Գումարեք 2 -2-ին:
x=0,y=-3
Այժմ համակարգը լուծվել է:
2x-y=3
Դիտարկել երկրորդ հավասարումը: Հավասարման երկու կողմերը բազմապատկեք 6-ով՝ 3,6,2-ի ընդհանուր ամենափոքր բազմապատիկով:
3x-2y=6,2x-y=3
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}3&-2\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\3\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}3&-2\\2&-1\end{matrix}\right))\left(\begin{matrix}3&-2\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\2&-1\end{matrix}\right))\left(\begin{matrix}6\\3\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}3&-2\\2&-1\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\2&-1\end{matrix}\right))\left(\begin{matrix}6\\3\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\2&-1\end{matrix}\right))\left(\begin{matrix}6\\3\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-\left(-2\times 2\right)}&-\frac{-2}{3\left(-1\right)-\left(-2\times 2\right)}\\-\frac{2}{3\left(-1\right)-\left(-2\times 2\right)}&\frac{3}{3\left(-1\right)-\left(-2\times 2\right)}\end{matrix}\right)\left(\begin{matrix}6\\3\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&2\\-2&3\end{matrix}\right)\left(\begin{matrix}6\\3\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6+2\times 3\\-2\times 6+3\times 3\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-3\end{matrix}\right)
Կատարել թվաբանություն:
x=0,y=-3
Արտահանեք մատրիցայի x և y տարրերը:
2x-y=3
Դիտարկել երկրորդ հավասարումը: Հավասարման երկու կողմերը բազմապատկեք 6-ով՝ 3,6,2-ի ընդհանուր ամենափոքր բազմապատիկով:
3x-2y=6,2x-y=3
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
2\times 3x+2\left(-2\right)y=2\times 6,3\times 2x+3\left(-1\right)y=3\times 3
3x-ը և 2x-ը հավասարեցնելու համար բազմապատկեք առաջին հավասարման յուրաքանչյուր կողմի բոլոր անդամները 2-ով, իսկ երկրորդ հավասարման յուրաքանչյուր կողմի բոլոր անդամները՝ 3-ով:
6x-4y=12,6x-3y=9
Պարզեցնել:
6x-6x-4y+3y=12-9
Հանեք 6x-3y=9 6x-4y=12-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
-4y+3y=12-9
Գումարեք 6x -6x-ին: 6x-ը և -6x-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
-y=12-9
Գումարեք -4y 3y-ին:
-y=3
Գումարեք 12 -9-ին:
y=-3
Բաժանեք երկու կողմերը -1-ի:
2x-\left(-3\right)=3
Փոխարինեք -3-ը y-ով 2x-y=3-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
2x=0
Հանեք 3 հավասարման երկու կողմից:
x=0
Բաժանեք երկու կողմերը 2-ի:
x=0,y=-3
Այժմ համակարգը լուծվել է:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}