Skip դեպի հիմնական բովանդակությունը
Լուծել x, y-ի համար
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

3x+y=9,2x-3y=6
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
3x+y=9
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
3x=-y+9
Հանեք y հավասարման երկու կողմից:
x=\frac{1}{3}\left(-y+9\right)
Բաժանեք երկու կողմերը 3-ի:
x=-\frac{1}{3}y+3
Բազմապատկեք \frac{1}{3} անգամ -y+9:
2\left(-\frac{1}{3}y+3\right)-3y=6
Փոխարինեք -\frac{y}{3}+3-ը x-ով մյուս հավասարման մեջ՝ 2x-3y=6:
-\frac{2}{3}y+6-3y=6
Բազմապատկեք 2 անգամ -\frac{y}{3}+3:
-\frac{11}{3}y+6=6
Գումարեք -\frac{2y}{3} -3y-ին:
-\frac{11}{3}y=0
Հանեք 6 հավասարման երկու կողմից:
y=0
Բաժանեք հավասարման երկու կողմերը -\frac{11}{3}-ի, որը նույնն է, ինչ բազմապատկել երկու կողմերը կոտորակի հակադարձով:
x=3
Փոխարինեք 0-ը y-ով x=-\frac{1}{3}y+3-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=3,y=0
Այժմ համակարգը լուծվել է:
3x+y=9,2x-3y=6
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}3&1\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\6\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}3&1\\2&-3\end{matrix}\right))\left(\begin{matrix}3&1\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&-3\end{matrix}\right))\left(\begin{matrix}9\\6\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}3&1\\2&-3\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&-3\end{matrix}\right))\left(\begin{matrix}9\\6\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&-3\end{matrix}\right))\left(\begin{matrix}9\\6\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{3\left(-3\right)-2}&-\frac{1}{3\left(-3\right)-2}\\-\frac{2}{3\left(-3\right)-2}&\frac{3}{3\left(-3\right)-2}\end{matrix}\right)\left(\begin{matrix}9\\6\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}&\frac{1}{11}\\\frac{2}{11}&-\frac{3}{11}\end{matrix}\right)\left(\begin{matrix}9\\6\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}\times 9+\frac{1}{11}\times 6\\\frac{2}{11}\times 9-\frac{3}{11}\times 6\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\0\end{matrix}\right)
Կատարել թվաբանություն:
x=3,y=0
Արտահանեք մատրիցայի x և y տարրերը:
3x+y=9,2x-3y=6
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
2\times 3x+2y=2\times 9,3\times 2x+3\left(-3\right)y=3\times 6
3x-ը և 2x-ը հավասարեցնելու համար բազմապատկեք առաջին հավասարման յուրաքանչյուր կողմի բոլոր անդամները 2-ով, իսկ երկրորդ հավասարման յուրաքանչյուր կողմի բոլոր անդամները՝ 3-ով:
6x+2y=18,6x-9y=18
Պարզեցնել:
6x-6x+2y+9y=18-18
Հանեք 6x-9y=18 6x+2y=18-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
2y+9y=18-18
Գումարեք 6x -6x-ին: 6x-ը և -6x-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
11y=18-18
Գումարեք 2y 9y-ին:
11y=0
Գումարեք 18 -18-ին:
y=0
Բաժանեք երկու կողմերը 11-ի:
2x=6
Փոխարինեք 0-ը y-ով 2x-3y=6-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=3
Բաժանեք երկու կողմերը 2-ի:
x=3,y=0
Այժմ համակարգը լուծվել է: